针对点云配准过程中点云数据冗余、易出现误匹配点对和配准精度低的问题,提出了一种融合超体素及几何特征的点云配准方法。首先使用超体素与法向量信息相结合的方法提取特征点;其次,在粗配准中,通过使用快速特征点直方图(Fast Point Fea...针对点云配准过程中点云数据冗余、易出现误匹配点对和配准精度低的问题,提出了一种融合超体素及几何特征的点云配准方法。首先使用超体素与法向量信息相结合的方法提取特征点;其次,在粗配准中,通过使用快速特征点直方图(Fast Point Feature Histograms,FPFH)进行特征描述,采用双向最近邻比获取初始特征点对应关系,基于法向量夹角策略和随机采样一致性(Random Sample Consensus,RANSAC)算法进行对应关系的优化,获取良好的初始位姿;最后,在精配准中,基于初始位姿与改进的迭代最近点算法(Iterative Closest Point,ICP)算法完成点云配准。通过在斯坦福数据集中进行配准实验,验证了所提算法具有更好的鲁棒性,能高效且精准的完成点云配准。展开更多
为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点...为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点云数据量级;在快速点特征直方图(fast point features histogram,FPFH)中引入距离的二次函数,降低远距离邻域点的权值,提高近距离邻域点的权值。运用公开数据集Bunny点云数据进行实验的结果表明,该算法相对于传统点云配准算法的配准精度提升了54.65%,配准效率提升了39.39%。运用多组数据验证了该算法的有效性。展开更多
文摘为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点云数据量级;在快速点特征直方图(fast point features histogram,FPFH)中引入距离的二次函数,降低远距离邻域点的权值,提高近距离邻域点的权值。运用公开数据集Bunny点云数据进行实验的结果表明,该算法相对于传统点云配准算法的配准精度提升了54.65%,配准效率提升了39.39%。运用多组数据验证了该算法的有效性。