Abstract: PAN (Polyacrylonitrile)-based carbonaceous fibers were prepared at the heat treatment temperature (HTT) range of 650 to 900 ℃. The relationships among HTT, carbon content and volume resistivity of the ...Abstract: PAN (Polyacrylonitrile)-based carbonaceous fibers were prepared at the heat treatment temperature (HTT) range of 650 to 900 ℃. The relationships among HTT, carbon content and volume resistivity of the carbonaceous fibers were investigated. The carbonaceous fibers/PTFE (Polytetrafluoroethylene) antistatic coatings were prepared by the spraying technology and the effects of carbonaceous fibers and pigments on surface resistivity of the coatings were systematically discussed. Micrographs provide insight into the antistatic mechanism of the coating. The results show that carbon content of the carbonaceous fibers increases from 68.8% to 74.8% (mass fraction) and the volume resistivity decreases drastically from 1.94× 10^-3 to 8.27× 10 ^-2.cm. The surface resistivity of the antistatic coating is adjustable between 10^5 and 10^8Ω2 to fit the different antistatic materials. Static is dissipated by a conductive network of short fibers and the tunneling effect between the neighboring fibers and conductive pigments. Conductive pigments make the conductive network more perfect and improve the antistatic ability, but insulating pigments acting as barriers for the formation of conductive channel increases the surface resistivity of the coatings. The influence of pigments on the surface resistivity drops gradually with the decrease of the carbonaceous fibers volume resistivity.展开更多
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc...This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.展开更多
基金Project(2011CB605601)supported by the National Basic Research Program(973 Program)of ChinaProject(50902088)supported by the National Natural Science Foundation of China+1 种基金Project(ZR2011EMM002)supported by the Natural Science Foundation in Shandong Province,ChinaProject(2009AA035301)supported by the National High Technology Research and Development Program(863 Program)of China
文摘Abstract: PAN (Polyacrylonitrile)-based carbonaceous fibers were prepared at the heat treatment temperature (HTT) range of 650 to 900 ℃. The relationships among HTT, carbon content and volume resistivity of the carbonaceous fibers were investigated. The carbonaceous fibers/PTFE (Polytetrafluoroethylene) antistatic coatings were prepared by the spraying technology and the effects of carbonaceous fibers and pigments on surface resistivity of the coatings were systematically discussed. Micrographs provide insight into the antistatic mechanism of the coating. The results show that carbon content of the carbonaceous fibers increases from 68.8% to 74.8% (mass fraction) and the volume resistivity decreases drastically from 1.94× 10^-3 to 8.27× 10 ^-2.cm. The surface resistivity of the antistatic coating is adjustable between 10^5 and 10^8Ω2 to fit the different antistatic materials. Static is dissipated by a conductive network of short fibers and the tunneling effect between the neighboring fibers and conductive pigments. Conductive pigments make the conductive network more perfect and improve the antistatic ability, but insulating pigments acting as barriers for the formation of conductive channel increases the surface resistivity of the coatings. The influence of pigments on the surface resistivity drops gradually with the decrease of the carbonaceous fibers volume resistivity.
基金Project(52276068)supported by the National Natural Science Foundation of China。
文摘This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.