使用LHT-1型粮食回弹模量仪测定不同含水率、不同围压下的油菜籽堆的压缩密度与体变模量。实验结果表明:不同含水率油菜籽堆的压缩密度随着围压(0~140.0 k Pa)的增大而增大,并且趋向于各自的最大值,这些最大值随着含水率的增大而增大;...使用LHT-1型粮食回弹模量仪测定不同含水率、不同围压下的油菜籽堆的压缩密度与体变模量。实验结果表明:不同含水率油菜籽堆的压缩密度随着围压(0~140.0 k Pa)的增大而增大,并且趋向于各自的最大值,这些最大值随着含水率的增大而增大;依据实验测得的数据,建立了以含水率与围压作为自变量,压缩密度作为函数的预测模型,油菜籽堆压缩密度实验数值与模型预测数值之间拟合度较高,平均误差为0.61%。油菜籽堆的体变模量随着围压(0~140.0 k Pa)的增大而增大,随着含水率(7.11%~13.52%)的增大而减小。建立了以含水率与围压作为自变量,体变模量作为函数的预测模型,模型预测的体变模量与实验测定值误差较小,平均误差为4.38%。展开更多
It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformat...It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.展开更多
Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-depend...Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-dependent deformation modulus (RDDM) was proposed. Considering the nonlinearity characteristic of deformation and locality otherness of surrounding rock, deterioration parameter field of deformation modulus of rockmass around opening was quantitatively calculated through a given function. Applicability for multi-cavern condition and parameter sensibility of the model was analyzed by numerical experiments using synthetic data. Furthermore, the model was applied to identify EDZ of underground caverns of Pubugou hydropower station by calculating deterioration parameter field. Based on the parametric analysis of spatial effect and geological investigation, it is recognized that large radial deformation of deep fractured rock at the spandrel position and insufficient supporting bolts mainly result in great deformation pressure to act on the shotcrete and cause partial crack and spalling. It is shown that deterioration parameter field along the longitudinal axis of main powerhouse is evidently non-homogeneous in space and distributes exponentially along the radius from the opening. The model provides a simple and convenient way to identify the EDZ in the working state for rapid construction feedback analysis and support optimization of underground cavem from quantitative point of view and also aids in interpreting monitoring displacements and estimating support requirements.展开更多
文摘使用LHT-1型粮食回弹模量仪测定不同含水率、不同围压下的油菜籽堆的压缩密度与体变模量。实验结果表明:不同含水率油菜籽堆的压缩密度随着围压(0~140.0 k Pa)的增大而增大,并且趋向于各自的最大值,这些最大值随着含水率的增大而增大;依据实验测得的数据,建立了以含水率与围压作为自变量,压缩密度作为函数的预测模型,油菜籽堆压缩密度实验数值与模型预测数值之间拟合度较高,平均误差为0.61%。油菜籽堆的体变模量随着围压(0~140.0 k Pa)的增大而增大,随着含水率(7.11%~13.52%)的增大而减小。建立了以含水率与围压作为自变量,体变模量作为函数的预测模型,模型预测的体变模量与实验测定值误差较小,平均误差为4.38%。
基金Projects(2018YFC0808403,2018YFE0123000)supported by the National Key Technologies Research&Development Program of ChinaProject(800015Z1185)supported by the Yueqi Young Scholar Project,ChinaProject(2020YJSNY04)supported by the Fundamental Research Funds for the Central Universities,China。
文摘It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.
基金Project(2010CB732005) supported by the National Basic Research Program of ChinaProjects(51279136, 51209164) supported by the National Natural Science Foundation of China
文摘Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-dependent deformation modulus (RDDM) was proposed. Considering the nonlinearity characteristic of deformation and locality otherness of surrounding rock, deterioration parameter field of deformation modulus of rockmass around opening was quantitatively calculated through a given function. Applicability for multi-cavern condition and parameter sensibility of the model was analyzed by numerical experiments using synthetic data. Furthermore, the model was applied to identify EDZ of underground caverns of Pubugou hydropower station by calculating deterioration parameter field. Based on the parametric analysis of spatial effect and geological investigation, it is recognized that large radial deformation of deep fractured rock at the spandrel position and insufficient supporting bolts mainly result in great deformation pressure to act on the shotcrete and cause partial crack and spalling. It is shown that deterioration parameter field along the longitudinal axis of main powerhouse is evidently non-homogeneous in space and distributes exponentially along the radius from the opening. The model provides a simple and convenient way to identify the EDZ in the working state for rapid construction feedback analysis and support optimization of underground cavem from quantitative point of view and also aids in interpreting monitoring displacements and estimating support requirements.