期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于动态图注意力机制的秦俑点云鲁棒配准
被引量:
1
1
作者
海琳琦
耿国华
+2 位作者
杨兴
李康
张海波
《光学精密工程》
EI
CAS
CSCD
北大核心
2022年第24期3210-3224,共15页
针对目前的点云配准方法在处理秦俑等文物模型时不能很好地解决分辨率不匹配、点云部分重叠、噪声点较多等问题,提出一种基于动态图注意力机制的ResUNet配准模型。该模型将残差模块融入U-Net网络中,使用三维稀疏体素卷积计算点云特征,...
针对目前的点云配准方法在处理秦俑等文物模型时不能很好地解决分辨率不匹配、点云部分重叠、噪声点较多等问题,提出一种基于动态图注意力机制的ResUNet配准模型。该模型将残差模块融入U-Net网络中,使用三维稀疏体素卷积计算点云特征,并引入一种新的归一化技术:批邻域归一化(Batch-Neighborhood Normalization,BNHN),来提高特征对于点密度变化的鲁棒性;为了进一步提高配准性能,该模型通过自注意力机制和交叉注意力机制聚合局部特征和上下文特征,最后结合随机抽样一致性算法来估计源点云与目标点云之间的变化矩阵,完成秦俑文物模型的鲁棒配准。为了验证本文方法的有效与鲁棒,使用四组数据集(3DMatch、3DLoMatch、分辨率不匹配的3DMatch数据集以及两组秦俑数据)对配准模型进行测试,实验结果表明,该算法在3DMatch数据集和3DLoMatch数据集上的配准召回率分别达到90.1%和61.0%;在分辨率不匹配的3DMatch数据集,相比与基于特征学习的配准算法,该算法在配准召回率上提升了5%~20%;在秦俑数据集上,相对旋转误差均小于0.071,相对平移误差均小于0.016,相较于同类算法减少了一个量级或几倍。因此,本文的模型能够提取三维点云的关键特征信息,并且对点密度和重叠度变化具有更高的鲁棒性。
展开更多
关键词
点
云
配准
动态图注意力机制
低重叠点云
点
密度变化
残差网络
在线阅读
下载PDF
职称材料
题名
基于动态图注意力机制的秦俑点云鲁棒配准
被引量:
1
1
作者
海琳琦
耿国华
杨兴
李康
张海波
机构
西北大学信息科学与技术学院
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2022年第24期3210-3224,共15页
基金
国家自然科学基金资助项目(No.61902317,No.61731015)
国家重点研发计划资助项目(No.2019YFC1521102,No.2019YFC1521103)
+2 种基金
陕西省重点产业链项目资助(No.2019ZDLSF07-02)
陕西省自然科学基金资助项目(No.2019JQ-166)
青海省重点研发计划资助项目(No.2020-SF-142,No.2020-SF-143)。
文摘
针对目前的点云配准方法在处理秦俑等文物模型时不能很好地解决分辨率不匹配、点云部分重叠、噪声点较多等问题,提出一种基于动态图注意力机制的ResUNet配准模型。该模型将残差模块融入U-Net网络中,使用三维稀疏体素卷积计算点云特征,并引入一种新的归一化技术:批邻域归一化(Batch-Neighborhood Normalization,BNHN),来提高特征对于点密度变化的鲁棒性;为了进一步提高配准性能,该模型通过自注意力机制和交叉注意力机制聚合局部特征和上下文特征,最后结合随机抽样一致性算法来估计源点云与目标点云之间的变化矩阵,完成秦俑文物模型的鲁棒配准。为了验证本文方法的有效与鲁棒,使用四组数据集(3DMatch、3DLoMatch、分辨率不匹配的3DMatch数据集以及两组秦俑数据)对配准模型进行测试,实验结果表明,该算法在3DMatch数据集和3DLoMatch数据集上的配准召回率分别达到90.1%和61.0%;在分辨率不匹配的3DMatch数据集,相比与基于特征学习的配准算法,该算法在配准召回率上提升了5%~20%;在秦俑数据集上,相对旋转误差均小于0.071,相对平移误差均小于0.016,相较于同类算法减少了一个量级或几倍。因此,本文的模型能够提取三维点云的关键特征信息,并且对点密度和重叠度变化具有更高的鲁棒性。
关键词
点
云
配准
动态图注意力机制
低重叠点云
点
密度变化
残差网络
Keywords
point cloud registration
dynamic graph attention mechanism
point clouds with low overlap
point density changes
residual network
分类号
TP394.1 [自动化与计算机技术—计算机应用技术]
TH691.9 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于动态图注意力机制的秦俑点云鲁棒配准
海琳琦
耿国华
杨兴
李康
张海波
《光学精密工程》
EI
CAS
CSCD
北大核心
2022
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部