期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DNN的低资源语音识别特征提取技术
被引量:
25
1
作者
秦楚雄
张连海
《自动化学报》
EI
CSCD
北大核心
2017年第7期1208-1219,共12页
针对低资源训练数据条件下深层神经网络(Deep neural network,DNN)特征声学建模性能急剧下降的问题,提出两种适合于低资源语音识别的深层神经网络特征提取方法.首先基于隐含层共享训练的网络结构,借助资源较为丰富的语料实现对深层瓶颈...
针对低资源训练数据条件下深层神经网络(Deep neural network,DNN)特征声学建模性能急剧下降的问题,提出两种适合于低资源语音识别的深层神经网络特征提取方法.首先基于隐含层共享训练的网络结构,借助资源较为丰富的语料实现对深层瓶颈神经网络的辅助训练,针对BN层位于共享层的特点,引入Dropout,Maxout,Rectified linear units等技术改善多流训练样本分布不规律导致的过拟合问题,同时缩小网络参数规模、降低训练耗时;其次为了改善深层神经网络特征提取方法,提出一种基于凸非负矩阵分解(Convex-non-negative matrix factorization,CNMF)算法的低维高层特征提取技术,通过对网络的权值矩阵分解得到基矩阵作为特征层的权值矩阵,然后从该层提取一种新的低维特征.基于Vystadial 2013的1小时低资源捷克语训练语料的实验表明,在26.7小时的英语语料辅助训练下,当使用Dropout和Rectified linear units时,识别率相对基线系统提升7.0%;当使用Dropout和Maxout时,识别率相对基线系统提升了12.6%,且网络参数数量相对其他系统降低了62.7%,训练时间降低了25%.而基于矩阵分解的低维特征在单语言训练和辅助训练的两种情况下都取得了优于瓶颈特征(Bottleneck features,BNF)的识别率,且在辅助训练的情况下优于深层神经网络隐马尔科夫识别系统,提升幅度从0.8%~3.4%不等.
展开更多
关键词
低资源语音识别
深层神经网络
瓶颈特征
凸非负矩阵分解
在线阅读
下载PDF
职称材料
低资源语音识别中融合多流特征的卷积神经网络声学建模方法
被引量:
7
2
作者
秦楚雄
张连海
《计算机应用》
CSCD
北大核心
2016年第9期2609-2615,共7页
针对卷积神经网络(CNN)声学建模参数在低资源训练数据条件下的语音识别任务中存在训练不充分的问题,提出一种利用多流特征提升低资源卷积神经网络声学模型性能的方法。首先,为了在低资源声学建模过程中充分利用有限训练数据中更多数量...
针对卷积神经网络(CNN)声学建模参数在低资源训练数据条件下的语音识别任务中存在训练不充分的问题,提出一种利用多流特征提升低资源卷积神经网络声学模型性能的方法。首先,为了在低资源声学建模过程中充分利用有限训练数据中更多数量的声学特征,先对训练数据提取几类不同的特征;其次,对每一类类特征分别构建卷积子网络,形成一个并行结构,使得多特征数据在概率分布上得以规整;然后通过在并行卷积子网络之上加入全连接层进行融合,从而得到一种新的卷积神经网络声学模型;最后,基于该声学模型搭建低资源语音识别系统。实验结果表明,并行卷积层子网络可以将不同特征空间规整得更为相似,且该方法相对传统多特征拼接方法和单特征CNN建模方法分别提升了3.27%和2.08%的识别率;当引入多语言训练时,该方法依然适用,且识别率分别相对提升了5.73%和4.57%。
展开更多
关键词
低资源语音识别
卷积神经网络
特征规整
多流特征
在线阅读
下载PDF
职称材料
基于预训练与音素字节对编码的越南语识别
被引量:
3
3
作者
沈之杰
郭武
《数据采集与处理》
CSCD
北大核心
2023年第1期101-110,共10页
基于无监督预训练技术的wav2vec 2.0在许多低资源语种上获得了良好的性能,成为研究的热点。本文在预训练模型的基础上进行越南语连续语音识别。将语音学信息引入到基于链接时序分类代价函数(Connectionist temporal classification,CTC...
基于无监督预训练技术的wav2vec 2.0在许多低资源语种上获得了良好的性能,成为研究的热点。本文在预训练模型的基础上进行越南语连续语音识别。将语音学信息引入到基于链接时序分类代价函数(Connectionist temporal classification,CTC)的声学建模中,选取音素与含位置信息的音素作为基础单元。为了平衡建模单元数目以及模型的精细程度,采用字节对编码(Byte-pair encoding,BPE)算法生成音素子词,将上下文信息结合到声学建模过程。实验在美国NIST的BABEL任务低资源的越南语开发集上进行,所提算法相对wav2vec 2.0基线系统有明显改进,识别词错误率由37.3%降低到29.4%。
展开更多
关键词
低资源语音识别
建模单元
字节对编码
音素子词
预训练
越南语
识别
在线阅读
下载PDF
职称材料
题名
基于DNN的低资源语音识别特征提取技术
被引量:
25
1
作者
秦楚雄
张连海
机构
信息工程大学信息系统工程学院
出处
《自动化学报》
EI
CSCD
北大核心
2017年第7期1208-1219,共12页
基金
国家自然科学基金(61673395
61302107
61403415)资助~~
文摘
针对低资源训练数据条件下深层神经网络(Deep neural network,DNN)特征声学建模性能急剧下降的问题,提出两种适合于低资源语音识别的深层神经网络特征提取方法.首先基于隐含层共享训练的网络结构,借助资源较为丰富的语料实现对深层瓶颈神经网络的辅助训练,针对BN层位于共享层的特点,引入Dropout,Maxout,Rectified linear units等技术改善多流训练样本分布不规律导致的过拟合问题,同时缩小网络参数规模、降低训练耗时;其次为了改善深层神经网络特征提取方法,提出一种基于凸非负矩阵分解(Convex-non-negative matrix factorization,CNMF)算法的低维高层特征提取技术,通过对网络的权值矩阵分解得到基矩阵作为特征层的权值矩阵,然后从该层提取一种新的低维特征.基于Vystadial 2013的1小时低资源捷克语训练语料的实验表明,在26.7小时的英语语料辅助训练下,当使用Dropout和Rectified linear units时,识别率相对基线系统提升7.0%;当使用Dropout和Maxout时,识别率相对基线系统提升了12.6%,且网络参数数量相对其他系统降低了62.7%,训练时间降低了25%.而基于矩阵分解的低维特征在单语言训练和辅助训练的两种情况下都取得了优于瓶颈特征(Bottleneck features,BNF)的识别率,且在辅助训练的情况下优于深层神经网络隐马尔科夫识别系统,提升幅度从0.8%~3.4%不等.
关键词
低资源语音识别
深层神经网络
瓶颈特征
凸非负矩阵分解
Keywords
Low-resource speech recognition, deep neural network (DNN), bottleneck features (BNF), convex- nonnegative matrix factorization (CNMF)
分类号
TN912.34 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
低资源语音识别中融合多流特征的卷积神经网络声学建模方法
被引量:
7
2
作者
秦楚雄
张连海
机构
信息工程大学信息系统工程学院
出处
《计算机应用》
CSCD
北大核心
2016年第9期2609-2615,共7页
基金
国家自然科学基金资助项目(61175017
61403415)~~
文摘
针对卷积神经网络(CNN)声学建模参数在低资源训练数据条件下的语音识别任务中存在训练不充分的问题,提出一种利用多流特征提升低资源卷积神经网络声学模型性能的方法。首先,为了在低资源声学建模过程中充分利用有限训练数据中更多数量的声学特征,先对训练数据提取几类不同的特征;其次,对每一类类特征分别构建卷积子网络,形成一个并行结构,使得多特征数据在概率分布上得以规整;然后通过在并行卷积子网络之上加入全连接层进行融合,从而得到一种新的卷积神经网络声学模型;最后,基于该声学模型搭建低资源语音识别系统。实验结果表明,并行卷积层子网络可以将不同特征空间规整得更为相似,且该方法相对传统多特征拼接方法和单特征CNN建模方法分别提升了3.27%和2.08%的识别率;当引入多语言训练时,该方法依然适用,且识别率分别相对提升了5.73%和4.57%。
关键词
低资源语音识别
卷积神经网络
特征规整
多流特征
Keywords
low-resource speech recognition
Convolutional Neural Network (CNN)
feature normalization
muhi-streamfeature
分类号
TN912.34 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
基于预训练与音素字节对编码的越南语识别
被引量:
3
3
作者
沈之杰
郭武
机构
中国科学技术大学电子工程与信息科学系
出处
《数据采集与处理》
CSCD
北大核心
2023年第1期101-110,共10页
基金
国家自然科学基金(U1836219)。
文摘
基于无监督预训练技术的wav2vec 2.0在许多低资源语种上获得了良好的性能,成为研究的热点。本文在预训练模型的基础上进行越南语连续语音识别。将语音学信息引入到基于链接时序分类代价函数(Connectionist temporal classification,CTC)的声学建模中,选取音素与含位置信息的音素作为基础单元。为了平衡建模单元数目以及模型的精细程度,采用字节对编码(Byte-pair encoding,BPE)算法生成音素子词,将上下文信息结合到声学建模过程。实验在美国NIST的BABEL任务低资源的越南语开发集上进行,所提算法相对wav2vec 2.0基线系统有明显改进,识别词错误率由37.3%降低到29.4%。
关键词
低资源语音识别
建模单元
字节对编码
音素子词
预训练
越南语
识别
Keywords
low-resource speech recognition
modeling unit
byte-pair encoding
phone based subword
pretraining
Vietnamese speech recognition
分类号
TN912.34 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DNN的低资源语音识别特征提取技术
秦楚雄
张连海
《自动化学报》
EI
CSCD
北大核心
2017
25
在线阅读
下载PDF
职称材料
2
低资源语音识别中融合多流特征的卷积神经网络声学建模方法
秦楚雄
张连海
《计算机应用》
CSCD
北大核心
2016
7
在线阅读
下载PDF
职称材料
3
基于预训练与音素字节对编码的越南语识别
沈之杰
郭武
《数据采集与处理》
CSCD
北大核心
2023
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部