雷达目标识别是弹道防御阶段的关键环节,为节约雷达时间资源和降低对计算机处理能力的要求,需研究低数据率雷达回波信号的弹道中段目标识别方法,本文以低数据率目标高分辨一维距离像序列(High Resolution Range Profile,HRRP)为研究对象...雷达目标识别是弹道防御阶段的关键环节,为节约雷达时间资源和降低对计算机处理能力的要求,需研究低数据率雷达回波信号的弹道中段目标识别方法,本文以低数据率目标高分辨一维距离像序列(High Resolution Range Profile,HRRP)为研究对象,提出了基于图像投影法的进动频率特征提取算法和基于特征级融合的弹道中段目标识别方法,解决了由于HRRP回波序列数据率过低而导致的时频曲线周期模糊和单一特征造成目标识别准确率浮动大的问题。本文通过仿真弹道导弹中段飞行场景中弹头、重诱饵、轻诱饵、碎片目标的特性数据,同时考虑目标尺寸、形状和微运动模型等差异,结合仿真数据对本文所提算法进行验证。实验结果表明在低数据率(10~100 Hz)下,HRRP序列利用本文算法提取的进动频率特征结果误差值小于0.05 Hz,具有较高准确性和稳定性,通过特征融合方法联合进动频率和目标结构特征将弹道中段目标的识别准确率提升到了96%以上且趋于稳定。展开更多
Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multi...Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.展开更多
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.