空间耦合低密度奇偶校验(spatially coupled low density parity check,SC-LDPC)码在次最优迭代译码算法下能够达到最大后验概率(maximum a posterior,MAP)译码性能,但其优异的性能需要在码长很长迭代次数很多时才能实现。当采用传统迭...空间耦合低密度奇偶校验(spatially coupled low density parity check,SC-LDPC)码在次最优迭代译码算法下能够达到最大后验概率(maximum a posterior,MAP)译码性能,但其优异的性能需要在码长很长迭代次数很多时才能实现。当采用传统迭代译码算法时,实现的复杂度将以指数增加,无法应用。为有效降低译码复杂度,滑窗译码算法被应用于空间耦合LDPC码的译码,但由于引入窗口截断,会造成译码性能的损失。针对上述问题,结合深度学习技术提出了一种空间耦合LDPC码的深度迭代译码算法。通过在消息传递过程中引入权重系数并采用深度神经网络对其进行训练获取权重系数,以此优化消息的可靠性度量值,从而加快译码收敛速度,提升译码性能。仿真结果表明:当传输在加性高斯白噪声信道时,所提的深度迭代译码算法在相同迭代次数下的译码性能均优于传统迭代译码算法和滑窗译码算法。展开更多
针对中短码长的低密度奇偶校验规则码(Low Density Parity Check,LDPC)规则码,该文采用消息更新规则改进和因子图变换方法,提出一种低复杂度差分迭代译码算法。在置信传播算法的基础上,仅当变量节点的消息值振荡时引入差分映射策略,得...针对中短码长的低密度奇偶校验规则码(Low Density Parity Check,LDPC)规则码,该文采用消息更新规则改进和因子图变换方法,提出一种低复杂度差分迭代译码算法。在置信传播算法的基础上,仅当变量节点的消息值振荡时引入差分映射策略,得出一种选择性的置信差分规则,自适应地调整校验节点消息的归一化系数,提高译码性能。同时,采用展开校验节点的图变换方法,将计算复杂度从随节点度分布指数性增长降至线性增长。分别在高斯白噪声信道和瑞利衰落信道下进行仿真实验,结果表明该算法和基于图变换的其他低复杂度译码算法相比,性能优越且复杂度低,和对数似然比的置信传播算法(LLR-BP)相比,高信噪比区域内的性能优异,低信噪比区域内的计算复杂度明显降低。展开更多
文摘空间耦合低密度奇偶校验(spatially coupled low density parity check,SC-LDPC)码在次最优迭代译码算法下能够达到最大后验概率(maximum a posterior,MAP)译码性能,但其优异的性能需要在码长很长迭代次数很多时才能实现。当采用传统迭代译码算法时,实现的复杂度将以指数增加,无法应用。为有效降低译码复杂度,滑窗译码算法被应用于空间耦合LDPC码的译码,但由于引入窗口截断,会造成译码性能的损失。针对上述问题,结合深度学习技术提出了一种空间耦合LDPC码的深度迭代译码算法。通过在消息传递过程中引入权重系数并采用深度神经网络对其进行训练获取权重系数,以此优化消息的可靠性度量值,从而加快译码收敛速度,提升译码性能。仿真结果表明:当传输在加性高斯白噪声信道时,所提的深度迭代译码算法在相同迭代次数下的译码性能均优于传统迭代译码算法和滑窗译码算法。
文摘针对中短码长的低密度奇偶校验规则码(Low Density Parity Check,LDPC)规则码,该文采用消息更新规则改进和因子图变换方法,提出一种低复杂度差分迭代译码算法。在置信传播算法的基础上,仅当变量节点的消息值振荡时引入差分映射策略,得出一种选择性的置信差分规则,自适应地调整校验节点消息的归一化系数,提高译码性能。同时,采用展开校验节点的图变换方法,将计算复杂度从随节点度分布指数性增长降至线性增长。分别在高斯白噪声信道和瑞利衰落信道下进行仿真实验,结果表明该算法和基于图变换的其他低复杂度译码算法相比,性能优越且复杂度低,和对数似然比的置信传播算法(LLR-BP)相比,高信噪比区域内的性能优异,低信噪比区域内的计算复杂度明显降低。