期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于进化算法低信噪比环境的基音频率检测 被引量:1
1
作者 张小恒 李勇明 谢文宾 《现代电子技术》 北大核心 2017年第11期46-52,共7页
构造频域空间的检测模型,将基音频率作为特征值进行提取,然后为检测模型引入模型参数即优化因子,通过进化算法对该因子进行全局优化,从而获取基音频率的全局最优值,在优化精度和时间代价上取得了较好的平衡。采用两种具有代表性的进化... 构造频域空间的检测模型,将基音频率作为特征值进行提取,然后为检测模型引入模型参数即优化因子,通过进化算法对该因子进行全局优化,从而获取基音频率的全局最优值,在优化精度和时间代价上取得了较好的平衡。采用两种具有代表性的进化算法进行算法设计,包括遗传算法(GA算法)和粒子群算法(PSO算法)。将所提算法与相关有代表性的算法进行比较,结果表明,所提算法在不同类型不同程度的噪声环境下,能显著提升检测识别率,尤其是在极低信噪比下,优势更为明显。 展开更多
关键词 低信噪比环境 基音频率 进化算法 遗传算法 粒子群算法
在线阅读 下载PDF
范数正则化解相关集成学习基音频率检测 被引量:1
2
作者 张小恒 李勇明 朱斌 《计算机工程与应用》 CSCD 北大核心 2017年第11期155-160,共6页
低信噪比环境下的基音频率检测极其重要且富有挑战性,至今未得到很好的解决。基于此,首先构造了基于PEFAC的频域空间检测模型,将基音频率作为特征进行提取,然后提出范数正则化的解相关集成学习神经网络模型(L2-DNNE)对其进行训练,利用... 低信噪比环境下的基音频率检测极其重要且富有挑战性,至今未得到很好的解决。基于此,首先构造了基于PEFAC的频域空间检测模型,将基音频率作为特征进行提取,然后提出范数正则化的解相关集成学习神经网络模型(L2-DNNE)对其进行训练,利用负相关学习机制(NCL)和模型复杂度约束项提高集成学习模型的泛化能力,从而获取基音频率的最优值,且在测试精度和时间代价上取得了较好的平衡。将该算法与相关有代表性的算法进行比较。比较结果表明,该算法在不同类型不同程度的噪声环境下,能显著提升检测识别率,尤其在低信噪比下有更显著优势。 展开更多
关键词 低信噪比环境 基音频率 范数正则化的解相关集成学习神经网络模型(L2-DNNE)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部