行人重识别虽已取得了显著进展,但在实际应用场景中,不同障碍物引起的遮挡问题仍然是一个亟待解决的挑战。为了从被遮挡行人中提取更有效的特征,提出了一种基于可学习掩模和位置编码(Learnable mask and position encoding, LMPE)的遮...行人重识别虽已取得了显著进展,但在实际应用场景中,不同障碍物引起的遮挡问题仍然是一个亟待解决的挑战。为了从被遮挡行人中提取更有效的特征,提出了一种基于可学习掩模和位置编码(Learnable mask and position encoding, LMPE)的遮挡行人重识别方法。首先,引入了一种可学习的双路注意力掩模生成器(Learnable dual attention mask generator, LDAMG),生成的掩模能够适应不同遮挡模式,显著提升了对被遮挡行人的识别准确性。该模块可以使网络更灵活,能更好地适应多样性的遮挡情况,有效克服了遮挡带来的困扰。同时,该网络通过掩模学习上下文信息,进一步增强了对行人所处场景的理解力。此外,为了解决Transformer位置信息损耗问题,引入了遮挡感知位置编码融合(Occlusion aware position encoding fusion, OAPEF)模块。该模块进行不同层次位置编码融合,使网络获得更强的表达能力。通过全方位整合图像位置编码,可以更准确地理解行人间的空间关系,提高模型对遮挡情况的适应能力。最后,仿真实验表明,本文提出的LMPE在Occluded-Duke和Occluded-ReID遮挡数据集以及Market-1501和DukeMTMC-ReID无遮挡数据集上都取得了较好的效果,验证了本文方法的有效性和优越性。展开更多
义原作为最小的语义单位对于标题生成任务至关重要。尽管义原驱动的神经语言模型(SDLM)是主流模型之一,但它在处理长文本序列时编码能力有限,未充分考虑位置关系,易引入噪声知识进而影响生成标题的质量。针对上述问题,提出一种基于Trans...义原作为最小的语义单位对于标题生成任务至关重要。尽管义原驱动的神经语言模型(SDLM)是主流模型之一,但它在处理长文本序列时编码能力有限,未充分考虑位置关系,易引入噪声知识进而影响生成标题的质量。针对上述问题,提出一种基于Transformer的生成式标题模型Tran-A-SDLM(Transformer Adaption based Sememe-Driven Language Model with positional embedding and knowledge reasoning)。该模型充分结合自适应位置编码和知识推理机制的优势。首先,引入Transformer模型以增强模型对文本序列的编码能力;其次,利用自适应位置编码机制增强模型的位置感知能力,从而增强对上下文义原知识的学习;此外,引入知识推理模块,用于表示义原知识,并指导模型生成准确标题;最后,为验证Tran-A-SDLM的优越性,在大规模中文短文本摘要(LCSTS)数据集上进行实验。实验结果表明,与RNN-context-SDLM相比,Tran-A-SDLM在ROUGE-1、ROUGE-2和ROUGE-L值上分别提升了0.2、0.7和0.5个百分点。消融实验结果进一步验证了所提模型的有效性。展开更多
针对情感分析任务中,序列模型存在难以获取文本的相对位置信息,且处理较长序列时容易丢失关键信息等问题,提出了一种融合非负正弦位置编码(non-negative sinusoidal position encoding,NSPE)和混合注意力机制(hybrid attention mechanis...针对情感分析任务中,序列模型存在难以获取文本的相对位置信息,且处理较长序列时容易丢失关键信息等问题,提出了一种融合非负正弦位置编码(non-negative sinusoidal position encoding,NSPE)和混合注意力机制(hybrid attention mechanism,HAM)的双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)情感分析模型(NSPEHA-BiLSTM)。提出NSPE方法,建立词语的NSPE,为词向量融入相对位置信息;通过Bi-LSTM提取文本特征,并基于HAM分别对特征的全局和局部特征进行赋权,确保关键信息的准确传递;通过全连接层实现文本情感分析。在IMDB数据集中,NSPEA-BiLSTM相较于Bi-LSTM和Text-CNN准确率分别提升了4.67和2.02个百分点,且输入的文本长度越长,模型效果越好,同时验证了NSPE优于其他位置编码。展开更多
文摘义原作为最小的语义单位对于标题生成任务至关重要。尽管义原驱动的神经语言模型(SDLM)是主流模型之一,但它在处理长文本序列时编码能力有限,未充分考虑位置关系,易引入噪声知识进而影响生成标题的质量。针对上述问题,提出一种基于Transformer的生成式标题模型Tran-A-SDLM(Transformer Adaption based Sememe-Driven Language Model with positional embedding and knowledge reasoning)。该模型充分结合自适应位置编码和知识推理机制的优势。首先,引入Transformer模型以增强模型对文本序列的编码能力;其次,利用自适应位置编码机制增强模型的位置感知能力,从而增强对上下文义原知识的学习;此外,引入知识推理模块,用于表示义原知识,并指导模型生成准确标题;最后,为验证Tran-A-SDLM的优越性,在大规模中文短文本摘要(LCSTS)数据集上进行实验。实验结果表明,与RNN-context-SDLM相比,Tran-A-SDLM在ROUGE-1、ROUGE-2和ROUGE-L值上分别提升了0.2、0.7和0.5个百分点。消融实验结果进一步验证了所提模型的有效性。
文摘针对情感分析任务中,序列模型存在难以获取文本的相对位置信息,且处理较长序列时容易丢失关键信息等问题,提出了一种融合非负正弦位置编码(non-negative sinusoidal position encoding,NSPE)和混合注意力机制(hybrid attention mechanism,HAM)的双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)情感分析模型(NSPEHA-BiLSTM)。提出NSPE方法,建立词语的NSPE,为词向量融入相对位置信息;通过Bi-LSTM提取文本特征,并基于HAM分别对特征的全局和局部特征进行赋权,确保关键信息的准确传递;通过全连接层实现文本情感分析。在IMDB数据集中,NSPEA-BiLSTM相较于Bi-LSTM和Text-CNN准确率分别提升了4.67和2.02个百分点,且输入的文本长度越长,模型效果越好,同时验证了NSPE优于其他位置编码。