位置不确定性是移动对象的重要特点之一。已有的不确定移动对象索引技术旨在提高查询效率,但是当移动对象位置频繁更新时,存在更新代价较大的问题。针对移动对象频繁位置更新引起的开销增加问题,在TPU-tree索引结构上支持移动对象群组...位置不确定性是移动对象的重要特点之一。已有的不确定移动对象索引技术旨在提高查询效率,但是当移动对象位置频繁更新时,存在更新代价较大的问题。针对移动对象频繁位置更新引起的开销增加问题,在TPU-tree索引结构上支持移动对象群组划分策略,给出了一种适用于频繁位置更新的索引结构GTPUtree。在此基础上提出了基于空间轨迹相似度的群组划分算法STSG(spatial trajectory of similarity group)和不确定移动对象群组更新算法。GTPU-tree通过减少同一分组中移动对象的更新次数,降低磁盘I/O次数,从而降低更新代价。通过实验对基于GTPU-tree和TPU2M-tree等索引结构的算法效率进行了对比分析,结果表明GTPU-tree相比于TPU2M-tree在移动对象数量较大时,GTPU-tree的更新代价将低于TPU2M-tree;与TPUtree相比插入性能提高约30%,更新代价降低约35%。展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
文摘位置不确定性是移动对象的重要特点之一。已有的不确定移动对象索引技术旨在提高查询效率,但是当移动对象位置频繁更新时,存在更新代价较大的问题。针对移动对象频繁位置更新引起的开销增加问题,在TPU-tree索引结构上支持移动对象群组划分策略,给出了一种适用于频繁位置更新的索引结构GTPUtree。在此基础上提出了基于空间轨迹相似度的群组划分算法STSG(spatial trajectory of similarity group)和不确定移动对象群组更新算法。GTPU-tree通过减少同一分组中移动对象的更新次数,降低磁盘I/O次数,从而降低更新代价。通过实验对基于GTPU-tree和TPU2M-tree等索引结构的算法效率进行了对比分析,结果表明GTPU-tree相比于TPU2M-tree在移动对象数量较大时,GTPU-tree的更新代价将低于TPU2M-tree;与TPUtree相比插入性能提高约30%,更新代价降低约35%。
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.