During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura...During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect.展开更多
The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,...The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,and then a set of steering vectors corresponding to distinct locations were numerically computed with the help of several time-disjoint auxiliary sources with known directions.Then,the optimization modeling with respect to the array error matrix(defined by the product of mutual coupling matrix and sensor gain-and-phase errors matrix)was constructed.Two preferable algorithms(called algorithm I and algorithm II)were developed to minimize the cost function.In algorithm I,the array error matrix was regarded as a whole parameter to be estimated,and the exact solution was available.Compared to some existing algorithms with the similar computation framework,algorithm I can make full use of the potentially linear characteristics of URA's error matrix,thus,the calibration precision was obviously enhanced.In algorithm II,the array error matrix was decomposed into two matrix parameters to be optimized.Compared to algorithm I,it can further decrease the number of unknowns and,thereby,yield better estimation accuracy.However,algorithm II was incapable of producing the closed-form solution and the iteration operation was unavoidable.Simulation results validate the excellent performances of the two novel algorithms compared to some existing calibration algorithms.展开更多
文摘During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect.
基金Project(61201381)supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057)supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,and then a set of steering vectors corresponding to distinct locations were numerically computed with the help of several time-disjoint auxiliary sources with known directions.Then,the optimization modeling with respect to the array error matrix(defined by the product of mutual coupling matrix and sensor gain-and-phase errors matrix)was constructed.Two preferable algorithms(called algorithm I and algorithm II)were developed to minimize the cost function.In algorithm I,the array error matrix was regarded as a whole parameter to be estimated,and the exact solution was available.Compared to some existing algorithms with the similar computation framework,algorithm I can make full use of the potentially linear characteristics of URA's error matrix,thus,the calibration precision was obviously enhanced.In algorithm II,the array error matrix was decomposed into two matrix parameters to be optimized.Compared to algorithm I,it can further decrease the number of unknowns and,thereby,yield better estimation accuracy.However,algorithm II was incapable of producing the closed-form solution and the iteration operation was unavoidable.Simulation results validate the excellent performances of the two novel algorithms compared to some existing calibration algorithms.