Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite fo...Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.展开更多
Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to ...Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to determine the source and evolutionary processes of the gypsum rocks in this area.The gypsum sequences in the Lanping Basin developed in two formations:the Triassic Sanhedong Formation and the Paleogene Yunlong Formation.The gypsum hosted in the former displays a primary thick-banded structure withδ34SV-CDT values in the range of 14.5‰−14.8‰.Combined with the 87Sr/86Sr values(0.707737−0.707783)of limestone,it can be suggested that the Sanhedong Formation is of marine origin.In contrast,the gypsum from the Paleogene Yunlong Formation is characterized by the dome,bead and diapiric salt structures,wider range of both 87Sr/86Sr(0.707695−0.708629)andδ34SV-CDT values(9.6‰−17‰),thus indicating a marine source but with the input of continental materials.The initial layered salt formations were formed by chemical deposition in a basin and were later intensely deformed by collisional orogeny during the Himalaya period.As a result,variable salt structures were formed.We hereby propose an evolutionary model to elucidate the genesis of the gypsum formations in the Lanping Basin.展开更多
In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences o...In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.展开更多
基金Project(2023YFC3905904)supported by the National Key Research and Development Program,ChinaProject(2220197000221)supported by the Team of Foshan National Hi-Tech Industrial Development Zone Industrialization Entrepreneurial Teams Program,ChinaProject(2024ZZTS0373)supported by the Central South University Graduate Student Autonomous Exploration Innovative Programme,China。
文摘Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.
基金Project(41362008)supported by the National Natural Science Foundation of China。
文摘Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to determine the source and evolutionary processes of the gypsum rocks in this area.The gypsum sequences in the Lanping Basin developed in two formations:the Triassic Sanhedong Formation and the Paleogene Yunlong Formation.The gypsum hosted in the former displays a primary thick-banded structure withδ34SV-CDT values in the range of 14.5‰−14.8‰.Combined with the 87Sr/86Sr values(0.707737−0.707783)of limestone,it can be suggested that the Sanhedong Formation is of marine origin.In contrast,the gypsum from the Paleogene Yunlong Formation is characterized by the dome,bead and diapiric salt structures,wider range of both 87Sr/86Sr(0.707695−0.708629)andδ34SV-CDT values(9.6‰−17‰),thus indicating a marine source but with the input of continental materials.The initial layered salt formations were formed by chemical deposition in a basin and were later intensely deformed by collisional orogeny during the Himalaya period.As a result,variable salt structures were formed.We hereby propose an evolutionary model to elucidate the genesis of the gypsum formations in the Lanping Basin.
基金Project(51308549)supported by the National Natural Science Foundation,China
文摘In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.