期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多级图特征融合引导相机位姿回归
1
作者 司钧文 周自维 《光学精密工程》 北大核心 2025年第6期928-944,共17页
为了提高复杂场景下相机位姿估计的精度和稳定性,本文自主设计了ResGraphLoc网络,该网络通过引入残差网络与图注意力机制,进一步提高相机在遮挡、光照变化和低纹理场景下的位姿回归精度问题。该网络采用ResNet101作为特征编码器,通过改... 为了提高复杂场景下相机位姿估计的精度和稳定性,本文自主设计了ResGraphLoc网络,该网络通过引入残差网络与图注意力机制,进一步提高相机在遮挡、光照变化和低纹理场景下的位姿回归精度问题。该网络采用ResNet101作为特征编码器,通过改进的残差块增强显著特征提取能力。利用图注意力层融合多级特征图,并通过多头自注意力机制实现特征信息扩散和聚合。最后,通过非线性MLP层从特征嵌入中提取位置和角度特征,完成端到端相机位姿回归。在大型室外数据集上,ResGraphLoc模型的位姿误差优于现有算法。在LOOP和FULL场景下,位姿回归结果分别为7.18 m,2.48°与16.96 m,3.16°,相比基准模型提升超过25%。在4Seasons数据集的Neighborhood场景下,室外定位误差最低可以达到1.40 m,0.76°。在纹理缺失及重复的室内数据集下,位置角度回归结果分别可以达到0.08 m,3.25°。实验结果验证了ResGraphLoc在复杂环境下的高精度和稳定性,能有效应对遮挡、光照变化和低纹理场景。 展开更多
关键词 计算机视觉 相机位姿回归 相机定 图注意力 多级特征融合
在线阅读 下载PDF
融合深度学习与粒子滤波的移动机器人重定位方法 被引量:24
2
作者 杨傲雷 金宏宙 +1 位作者 陈灵 费敏锐 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第7期226-233,共8页
为有效解决移动机器人重定位问题,提出一种融合深度学习和粒子滤波的机器人重定位方法。首先,提出了3自由度移动机器人重定位方法架构,主要包含重定位模型构建和机器人在线重定位两个递进阶段;其次,在PoseNet基础上提出并构建了针对3自... 为有效解决移动机器人重定位问题,提出一种融合深度学习和粒子滤波的机器人重定位方法。首先,提出了3自由度移动机器人重定位方法架构,主要包含重定位模型构建和机器人在线重定位两个递进阶段;其次,在PoseNet基础上提出并构建了针对3自由度移动机器人的重定位网络模型GPoseNet,并将由GPoseNet预测的位姿结果作为粒子滤波定位算法的初始化状态,支撑后续重定位过程;然后,提出了一种基于数据模型的机器人绑架状态判定方法,以确定是否启动重定位过程;最后,在公开数据集上与实际环境中做了大量实验验证了此方法,结果表明:GPoseNet模型能够保证一定的位置预测精度并提升了姿态角预测精度,机器人重定位成功率达到87%。 展开更多
关键词 深度学习 位姿回归 粒子滤波定 机器人绑架 重定
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部