期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向无序分拣场景的工件6D位姿检测方法
1
作者 曹学鹏 李鑫 +4 位作者 冯艳丽 石瑞 葛天烨 张新荣 赵睿英 《工程科学与技术》 北大核心 2025年第5期298-308,共11页
目标6D位姿检测是实现机器人自主抓取的关键。为克服传统点对识别(PPF)方法检测性能差、耗时及难以检测到多平面特征工件的6D位姿等不足,提出面向无序分拣场景的工件6D位姿检测方法。首先,基于模型平面点分布筛选多平面特征工件,提取其... 目标6D位姿检测是实现机器人自主抓取的关键。为克服传统点对识别(PPF)方法检测性能差、耗时及难以检测到多平面特征工件的6D位姿等不足,提出面向无序分拣场景的工件6D位姿检测方法。首先,基于模型平面点分布筛选多平面特征工件,提取其边界特征进行6D位姿检测,并在多视点下提取模型点对以去除冗余点对,提高算法识别速度。其次,匹配场景与模型间的点对特征,利用快速投票方案获取无序场景中目标的位姿假设集合。接下来,通过位姿验证筛选方法,剔除重复和误匹配位姿,实现目标多实例位姿的粗略估计,并借助迭代最近点(ICP)算法完成目标位姿的精确估计。实验结果表明:在无序仿真场景中,单次识别时间小于等于1.15 s,平均平移偏差小于等于0.95 mm,平均旋转误差小于等于1.56°;在实际场景中,平均识别成功率为95.82%,平均单次识别时间为1.11 s。综上,该6D位姿检测方法在保证识别效率的同时兼顾了位姿估计精度,并在识别精度和速度上均优于同类算法,为机器人的精准抓取的实现提供了有力的保障。 展开更多
关键词 无序场景 6D姿检测 点对特征 位姿估计精度 识别率
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部