Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm. To develop the source number estimation method which has lower signal to noise ratio and is suitab...Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm. To develop the source number estimation method which has lower signal to noise ratio and is suitable to both correlated and uncorrelated impinging signals, a new source number estimation method called beam eigenvalue method (BEM) is proposed in this paper. Through analyzing the space power spectrum and the correlation of the line array, the covariance matrix is constructed in a new way, which is decided by the line array shape when the signal frequency is given. Both of the theory analysis and the simulation results show that the BEM method can estimate the source number for correlated signals and can be more effective at lower signal to noise ratios than the normal source number estimation methods.展开更多
Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had be...Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had been formed as a result of mining operations in the deeper strata. Taking into account the impact of lower coal seams mining on shallow excavations and based on the example of a region that had been intensely exploited, this paper proposes a methodology for analysing the stability of shallow mine voids in the rock mass. Deformations in the excavation region were calculated by using FLAC2D computer pro- gram and assigning the Coulomb-Mohr model to the rock mass. Based on the numerical analysis, this paper evaluated the stability of the void in the event of a roof support fall. The results indicate the like- lihood of void formation. Based on the Budryk-Knotbe theory, the deformations of rock mass and sand- stone strata in the roof of the void, which had been caused by mining exploitation in consecutive years, were calculated. The results of numerical calculations and analyses were compared with the limit defor- mations values of sandstone in tension. It is concluded that the exploitations cause the void to break down. The proposed method can forecast the discontinuous deformations threats in the areas that have undergone shallow undermining exploitation and the areas of underground urban.展开更多
The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth ord...The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.展开更多
文摘Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm. To develop the source number estimation method which has lower signal to noise ratio and is suitable to both correlated and uncorrelated impinging signals, a new source number estimation method called beam eigenvalue method (BEM) is proposed in this paper. Through analyzing the space power spectrum and the correlation of the line array, the covariance matrix is constructed in a new way, which is decided by the line array shape when the signal frequency is given. Both of the theory analysis and the simulation results show that the BEM method can estimate the source number for correlated signals and can be more effective at lower signal to noise ratios than the normal source number estimation methods.
文摘Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had been formed as a result of mining operations in the deeper strata. Taking into account the impact of lower coal seams mining on shallow excavations and based on the example of a region that had been intensely exploited, this paper proposes a methodology for analysing the stability of shallow mine voids in the rock mass. Deformations in the excavation region were calculated by using FLAC2D computer pro- gram and assigning the Coulomb-Mohr model to the rock mass. Based on the numerical analysis, this paper evaluated the stability of the void in the event of a roof support fall. The results indicate the like- lihood of void formation. Based on the Budryk-Knotbe theory, the deformations of rock mass and sand- stone strata in the roof of the void, which had been caused by mining exploitation in consecutive years, were calculated. The results of numerical calculations and analyses were compared with the limit defor- mations values of sandstone in tension. It is concluded that the exploitations cause the void to break down. The proposed method can forecast the discontinuous deformations threats in the areas that have undergone shallow undermining exploitation and the areas of underground urban.
文摘The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.