期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用伪重叠判定机制的多层循环GCN跨域推荐
1
作者 钱忠胜 王亚惠 +2 位作者 俞情媛 范赋宇 付庭峰 《软件学报》 北大核心 2025年第9期4327-4348,共22页
跨域推荐(cross-domain recommendation,CDR)通过将密集评分辅助域中的用户-项目评分模式迁移到稀疏评分目标域中的评分数据集,以缓解冷启动现象,近年来得到广泛研究.多数CDR算法所采用的基于单域推荐的聚类方法未有效利用重叠信息,无... 跨域推荐(cross-domain recommendation,CDR)通过将密集评分辅助域中的用户-项目评分模式迁移到稀疏评分目标域中的评分数据集,以缓解冷启动现象,近年来得到广泛研究.多数CDR算法所采用的基于单域推荐的聚类方法未有效利用重叠信息,无法充分适应跨域推荐,导致聚类结果不准确.在跨域推荐中,图卷积网络方法(graph convolution network,GCN)可充分利用节点间的关联,提高推荐的准确性.然而,基于GCN的跨域推荐往往使用静态图学习节点嵌入,忽视了用户的偏好会随推荐场景发生变化的情况,导致模型在面对不同的推荐任务时表现不佳,无法有效缓解数据稀疏性.基于此,提出一种利用伪重叠判定机制的多层循环GCN跨域推荐模型.首先,在社区聚类算法Louvain的基础上充分运用重叠数据,设计一个伪重叠判定机制,据此挖掘用户的信任关系以及相似用户社区,从而提高聚类算法在跨域推荐中的适应能力及其准确性.其次,提出一个包含嵌入学习模块和图学习模块的多层循环GCN,学习动态的域共享特征、域特有特征以及动态图结构,并通过两模块的循环增强,获取最新用户偏好,从而缓解数据稀疏问题.最后,采用多层感知器(multi-layer perceptron,MLP)对用户-项目交互建模,得到预测评分,通过与12种相关模型在4组数据域上的对比结果发现,所提方法是高效的,在MRR、NDCG、HR指标上分别平均提高5.47%、3.44%、2.38%. 展开更多
关键词 跨域推荐 伪重叠判定机制 图卷积网络 社区聚类 推荐系统
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部