期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于ConvNeXt的伪造人脸检测方法 被引量:1
1
作者 何德芬 江倩 +3 位作者 金鑫 冯明 苗圣法 易华松 《信息安全研究》 北大核心 2025年第3期231-240,共10页
由深度生成模型生成的虚假图像越发逼真,这些图像已经超越了人眼的识别能力.这种模型已成为编造谎言、制造舆论等非法活动的新工具.虽然当前研究者已经提出了很多检测方法检测伪造图像,但泛化能力普遍不高,因此,提出了一种基于ConvNeXt... 由深度生成模型生成的虚假图像越发逼真,这些图像已经超越了人眼的识别能力.这种模型已成为编造谎言、制造舆论等非法活动的新工具.虽然当前研究者已经提出了很多检测方法检测伪造图像,但泛化能力普遍不高,因此,提出了一种基于ConvNeXt的伪造人脸检测方法.首先在ConvNeXt的第2个和第3个下采样模块后添加极化自注意(polarization self-attention,PSA)模块,使网络具有空间注意力和通道注意力的性能.其次在ConvNeXt的尾部设计一个信息富余模块(rich imformation block,RIB),以丰富网络学习到的信息,通过该模块对信息进行处理后再进行最终的分类.此外,网络训练使用的损失函数是交叉熵损失与KL(Kullback-Leibler)散度的结合.在当前主流的伪造人脸数据集上作了大量的实验,实验结果表明该方法在FF++高质量数据集上无论是准确率还是泛化性都超过所有对比方法. 展开更多
关键词 神经网络 深度学习 伪造人脸 特征提取 伪造图像检测
在线阅读 下载PDF
一种强化伪造区域关注的深度伪造人脸检测方法
2
作者 张文祥 王夏黎 +1 位作者 王欣仪 杨宗宝 《图学学报》 北大核心 2025年第1期47-58,共12页
深度伪造人脸技术发展迅速并已被广泛应用于各种不良途径,检测被篡改的面部图像和视频也因此成为了一个重要的研究课题。现有的卷积神经网络存在过拟合,泛化性差的问题,在未知的合成人脸数据上表现不佳。针对这一不足,提出一种强化伪造... 深度伪造人脸技术发展迅速并已被广泛应用于各种不良途径,检测被篡改的面部图像和视频也因此成为了一个重要的研究课题。现有的卷积神经网络存在过拟合,泛化性差的问题,在未知的合成人脸数据上表现不佳。针对这一不足,提出一种强化伪造区域关注的深度伪造人脸检测方法。首先,引入注意力机制处理用于分类的特征图,学习到的注意力图可以突出被篡改的面部区域,提高了模型的泛化能力;其次,在骨干网络之后连接了伪造区域检测模块,通过检测多尺度锚框中是否存在伪造痕迹,减少了全局人脸信息的干扰,进一步加强了模型对局部伪造区域的关注;最后,引入一种一致性表示学习框架,通过明确约束同一输入的不同表示之间的一致性,使模型更加关注内在的伪造证据,避免过拟合。在FaceForensics++,Celeb-DF-v2和DFDC等3个数据集上,分别以EfficientNet-b4和Xception作为骨干网络进行实验。结果表明,该方法在数据集内评估时达到了较好的性能,在跨数据集评估时则优于原网络和其他先进的方法。 展开更多
关键词 深度伪造人脸检测 注意力机制 伪造区域检测 多尺度锚框 一致性表示
在线阅读 下载PDF
深度网络生成式伪造人脸检测方法研究综述 被引量:2
3
作者 杨睿 胡心如 +4 位作者 黄卓超 张玉书 蓝如师 邓珍荣 罗笑南 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第10期1491-1510,共20页
随着深度网络生成式伪造人脸技术的迅速传播,不法分子通过伪造人脸图像和视频实施电信诈骗等犯罪活动,如何从海量数据中高效、准确地检测出伪造人脸成为研究焦点.文中从深度网络生成式伪造人脸图像和生成式伪造人脸视频2个角度出发,系... 随着深度网络生成式伪造人脸技术的迅速传播,不法分子通过伪造人脸图像和视频实施电信诈骗等犯罪活动,如何从海量数据中高效、准确地检测出伪造人脸成为研究焦点.文中从深度网络生成式伪造人脸图像和生成式伪造人脸视频2个角度出发,系统归纳、分析、比较了当前伪造人脸检测方法.针对伪造人脸图像,从基于数字图像处理基础、深层次特征提取、空间域特征分析、多特征融合分析和指纹检测5个类别详细介绍了检测方法;并从生理信号、身份信息、多模态和时空不一致4个类别对伪造人脸视频的检测方法进行了探讨.分析表明,目前深度网络生成式伪造人脸检测方法的泛化能力有待提高,在未来的研究中,应当着重提升模型的跨数据集泛化能力、准确性和实用性,从而更好地防范虚假信息传播,以保护个人隐私和维护网络安全环境. 展开更多
关键词 伪造人脸检测 生成式伪造人脸 人脸图像 人脸视频 深度网络
在线阅读 下载PDF
基于多尺度Transformer融合多域信息的伪造人脸检测 被引量:3
4
作者 马欣 吉立新 李邵梅 《计算机科学》 CSCD 北大核心 2023年第10期112-118,共7页
当前,基于Deepfakes等深度伪造技术生成的“换脸”类伪造视频泛滥,给公民个人隐私和国家政治安全带来巨大威胁,为此,研究视频中深度伪造人脸检测技术具有重要意义。针对已有伪造人脸检测方法存在的面部特征提取不充分、泛化能力弱等不足... 当前,基于Deepfakes等深度伪造技术生成的“换脸”类伪造视频泛滥,给公民个人隐私和国家政治安全带来巨大威胁,为此,研究视频中深度伪造人脸检测技术具有重要意义。针对已有伪造人脸检测方法存在的面部特征提取不充分、泛化能力弱等不足,提出一种基于多尺度Transformer对多域信息进行融合的伪造人脸检测方法。基于多域特征融合的思路,同时从视频帧的频域与RGB域进行特征提取,提高模型的泛化性;联合EfficientNet和多尺度Transformer,设计多层级的特征提取网络以提取更精细的伪造特征。在开源数据集上的测试结果表明,相比已有方法,所提方法具有更好的检测效果;同时在跨数据集上的实验结果证明了所提模型具有较好的泛化性能。 展开更多
关键词 伪造人脸检测 多尺度Transformer EfficientNet 频域特征 特征融合
在线阅读 下载PDF
基于有监督注意力网络的伪造人脸视频检测 被引量:3
5
作者 盛文俊 曹林 张帆 《计算机工程与设计》 北大核心 2023年第2期504-510,共7页
在伪造人脸视频检测中,大多数方法都以单一的卷积神经网络作为特征提取模块,提取的特征可能与人类的视觉机制不符。针对此类问题,提出基于有监督注意力网络的伪造人脸视频检测方法。基于胶囊网络检测伪造人脸视频,使用注意力分支提高对... 在伪造人脸视频检测中,大多数方法都以单一的卷积神经网络作为特征提取模块,提取的特征可能与人类的视觉机制不符。针对此类问题,提出基于有监督注意力网络的伪造人脸视频检测方法。基于胶囊网络检测伪造人脸视频,使用注意力分支提高对伪造人脸图像细节特征的提取能力,使用焦点损失提高模型对难检测样本的检测能力。在数据集FaceForensics++上的实验结果表明,提出方案有更优越的性能。 展开更多
关键词 伪造人脸视频检测 胶囊网络 注意力机制 有监督注意力网络 深度学习
在线阅读 下载PDF
结合注意力机制和Gabor滤波器的人脸伪造检测
6
作者 罗维薇 岳田田 雷琴 《湖南大学学报(自然科学版)》 北大核心 2025年第4期27-33,共7页
针对假人脸和真实人脸纹理的显著差异,提出了一种基于纹理特征的人脸伪造检测模型.首先,以ResNet18为主干网络,结合通道注意力机制和残差网络解决网络退化的问题,并建立通道之间的联系以提取深层特征;其次,运用自相关矩阵来量化图像块... 针对假人脸和真实人脸纹理的显著差异,提出了一种基于纹理特征的人脸伪造检测模型.首先,以ResNet18为主干网络,结合通道注意力机制和残差网络解决网络退化的问题,并建立通道之间的联系以提取深层特征;其次,运用自相关矩阵来量化图像块之间的相关性,捕捉图像中不同尺度的特征以获取全局统计特征;最后,通过在自相关模块的每个池化层后引入Gabor滤波器,提取图像的局部纹理特征,全面描述图像内容,并采用Softmax函数对输入图像进行层次化分类.实验结果表明,对于不同的图像增强方法编辑的假图像,该方法有效提升了检测准确率. 展开更多
关键词 人脸伪造检测 残差网络 注意力机制 自相关矩阵 GABOR滤波器
在线阅读 下载PDF
基于注意力掩码与特征提取的人脸伪造主动防御
7
作者 王瑜 方贤进 +2 位作者 杨高明 丁一峰 杨新露 《计算机应用》 北大核心 2025年第3期904-910,共7页
为了解决人脸图像在未经授权情况下被伪造或篡改的问题,提出一种基于注意力掩码与特征提取的人脸伪造主动防御方法。该方法旨在采取攻击性措施,向图像中加入可干扰伪造模型的对抗样本,从源头上预防图像被伪造,同时提高被保护图像的视觉... 为了解决人脸图像在未经授权情况下被伪造或篡改的问题,提出一种基于注意力掩码与特征提取的人脸伪造主动防御方法。该方法旨在采取攻击性措施,向图像中加入可干扰伪造模型的对抗样本,从源头上预防图像被伪造,同时提高被保护图像的视觉质量。首先,采用改进的梯度下降法生成对抗扰动并将这些扰动添加至原始图像,使原始图像在经过伪造处理后生成模糊的虚假图像;同时,在生成器中增添注意力掩码,以增强关键特征通道,从而降低复杂背景和光照带来的影响;其次,使用VGG16预训练网络提取图像特征,在特征图层面提升对抗图像的视觉质量。在名人人脸属性(CelebA)数据集和Radboud面孔数据库(RaFD)数据集上的实验结果表明:对StarGAN,所提方法的防御成功率分别达到99.80%和99.63%,生成的对抗图像的视觉质量相较于基于扩频对抗攻击的基准方法在结构相似性(SSIM)上分别提升了30.86%和26.63%,在峰值信噪比(PSNR)上分别提高了34.80%和36.15%。可见,所提方法可有效防御人脸伪造,同时提升对抗图像的视觉质量。 展开更多
关键词 人脸伪造 主动防御 注意力掩码 对抗样本 特征提取
在线阅读 下载PDF
基于多分类数据集的人脸伪造算法识别模型
8
作者 丁博文 芦天亮 +2 位作者 彭舒凡 耿浩琦 杨刚 《计算机科学》 北大核心 2025年第7期353-362,共10页
目前,人脸检测方法主要集中在人脸真假检测,对伪造算法识别的研究较少,存在图像扰动鲁棒性较差、资源占用大等问题;同时,公开的人脸检测数据集存在更新慢、种类少等问题。为解决以上问题,设计了人脸伪造算法识别模型Indentifor-mer。该... 目前,人脸检测方法主要集中在人脸真假检测,对伪造算法识别的研究较少,存在图像扰动鲁棒性较差、资源占用大等问题;同时,公开的人脸检测数据集存在更新慢、种类少等问题。为解决以上问题,设计了人脸伪造算法识别模型Indentifor-mer。该模型以视觉自注意力模型为主干,首先将位置编码融合块分解,再使用Khatri-Rao积改进的快速傅里叶变换对全局特征进行提取,同时采用并行卷积结构补充局部特征信息并利用多头注意力机制进行融合,以增强模型的建模能力。最后,通过基于正则化改进的多层感知机减少过拟合,实现人脸伪造算法的识别。此外,构建了虚假人脸多分类数据集,其包含扩散模型、大模型及融合技术等18种伪造方法,共计41万余张人脸图像,具有更好的数据多样性和真假混合性。实验结果表明,Indentifomer模型在不增加资源开销的情况下,在算法识别多分类和真假分辨二分类任务中AUC分别达到99.57%和99.73%,在鲁棒性实验中AUC平均仅下降4.62%,具有较高的识别能力和抗干扰能力。 展开更多
关键词 人脸伪造算法识别 深度伪造 视觉自注意力 人脸数据集 多分类
在线阅读 下载PDF
基于困难感知元学习的跨域人脸伪造检测
9
作者 金世辰 谭晓阳 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第2期371-377,共7页
随着面部伪造技术的快速迭代,能够应对未见过的伪造方法的鲁棒检测机制需求变得日益重要。然而,当前的方法主要针对特定的伪造技术设计,这在应对更广泛的检测挑战时存在局限性。为了解决这些问题,本文提出了一种用于跨域人脸伪造检测的... 随着面部伪造技术的快速迭代,能够应对未见过的伪造方法的鲁棒检测机制需求变得日益重要。然而,当前的方法主要针对特定的伪造技术设计,这在应对更广泛的检测挑战时存在局限性。为了解决这些问题,本文提出了一种用于跨域人脸伪造检测的难度感知元学习(Difficulty⁃aware meta⁃learning,DAML)方法。在元训练阶段,本文方法利用与伪造图像无关的元学习(Model⁃agnostic meta⁃learning,MAML)方法来训练模型。通过利用目标域中的少量数据,可以调整参数以适应新任务。为了解决与模型无关的元学习方法中的不稳定训练问题,本文引入了一种难度感知机制,在训练阶段动态调整不同任务的学习权重。在多个公开的基准数据集上进行了广泛的实验,实验结果表明,本文方法优于RECCE、Xception、RFM等方法,在适应未见过的目标域方面表现更好。 展开更多
关键词 人脸伪造检测 元学习 跨领域 动态调整学习权重 泛化性
在线阅读 下载PDF
基于帧内-帧间自融合的双流泛化人脸伪造检测方法
10
作者 董丰恺 邹晓强 +3 位作者 王佳慧 马利民 杨文元 刘熙尧 《计算机工程》 CAS CSCD 北大核心 2024年第10期185-195,共11页
现有人脸伪造检测方法往往在已知伪造类型上表现良好,但面对未知数据时检测性能有所下降,模型易受到过拟合的影响,检测泛化性不足。针对此问题,提出一种基于帧内-帧间自融合的双流泛化人脸伪造检测方法,从数据增强和检测器改进2个方面... 现有人脸伪造检测方法往往在已知伪造类型上表现良好,但面对未知数据时检测性能有所下降,模型易受到过拟合的影响,检测泛化性不足。针对此问题,提出一种基于帧内-帧间自融合的双流泛化人脸伪造检测方法,从数据增强和检测器改进2个方面提高检测泛化性。设计帧内-帧间自融合模块,分别利用同帧人脸、帧间人脸进行数据增强:帧内自融合子模块利用同帧人脸生成训练数据,从而避免人脸图像身份信息干扰;帧间自融合子模块利用伪造视频的帧间不一致性,进一步构造多样性丰富、逼真的训练数据集,从而有效防止模型的过拟合,确保检测模型的泛化能力。此外,设计基于通道注意力机制的双流特征融合网络,在网络的浅层提取RGB特征、高频特征并进行融合来挖掘伪造信息,在提升模型性能的同时缓解网络的参数增长。将模型在4个数据集上与9种主流检测方法进行对比实验,结果表明:在跨数据集实验中,所提方法较次优方法AUC均值提高1.52个百分点,EER均值降低1.5个百分点;在跨伪造方法实验中,所提方法在4种伪造方法子数据集上均取得最优或次优效果。实验结果验证了该方法优秀的泛化能力。 展开更多
关键词 人脸伪造检测 帧内-帧间自融合 特征融合 注意力机制 双流网络 泛化能力
在线阅读 下载PDF
人脸深度伪造检测综述 被引量:7
11
作者 孙毅 王志浩 +3 位作者 邓佳 李犇 杨彬 唐胜 《信息安全研究》 2022年第3期241-257,共17页
近年来,视频媒体随着移动互联网的普及发展迅猛,与此同时人脸伪造技术也随着计算机视觉的发展取得了很大的进步.诚然人脸伪造可以用来制作有趣的短视频应用,但由于其易生成、生成用时短、逼真度高等特性,其恶意使用对社会稳定和信息安... 近年来,视频媒体随着移动互联网的普及发展迅猛,与此同时人脸伪造技术也随着计算机视觉的发展取得了很大的进步.诚然人脸伪造可以用来制作有趣的短视频应用,但由于其易生成、生成用时短、逼真度高等特性,其恶意使用对社会稳定和信息安全产生了极大威胁,如何检测互联网中的人脸伪造视频成为亟待解决的问题.在国内外学者的努力下,伪造检测在近些年也取得了很大的突破,因此旨在对现有的伪造检测方法进行详细的梳理和总结.特别地,首先介绍伪造检测数据集,然后从伪造视频的痕迹、神经网络结构、视频时序信息、人脸身份信息、检测算法泛化性等方面对现有的方法进行归纳和总结,并对相应方法的检测结果进行对比和分析,最后对深度伪造检测的研究现状进行总结,并展望其面临的挑战和发展趋势,为相关研究工作提供借鉴. 展开更多
关键词 深度伪造 人脸伪造检测 媒体取证 生成对抗网络 视频篡改
在线阅读 下载PDF
基于改进CycleGAN的人脸性别伪造图像生成模型 被引量:6
12
作者 石达 芦天亮 +2 位作者 杜彦辉 张建岭 暴雨轩 《计算机科学》 CSCD 北大核心 2022年第2期31-39,共9页
深度伪造可以将人的声音、面部及身体动作拼接,从而合成虚假内容,用于转换性别、改变年龄等。基于生成对抗式图像翻译网络的人脸性别伪造图像存在容易改变无关图像域、人脸细节不够丰富等问题。针对这些问题,文中提出基于改进CycleGAN... 深度伪造可以将人的声音、面部及身体动作拼接,从而合成虚假内容,用于转换性别、改变年龄等。基于生成对抗式图像翻译网络的人脸性别伪造图像存在容易改变无关图像域、人脸细节不够丰富等问题。针对这些问题,文中提出基于改进CycleGAN的人脸性别伪造图像生成模型。首先,优化生成器结构,利用注意力机制与自适应残差块提取更丰富的人脸特征;然后,借鉴相对损失的思想对损失函数进行改进,提高判别器的判别能力。最后,提出基于年龄约束的模型训练策略,减小了年龄变化对生成图像的影响。在CelebA和IMDB-WIKI数据集上进行实验,实验结果表明,与原始CycleGAN方法和UGATIT方法相比,所提方法能够生成更加真实的人脸性别伪造图像,伪造男性和伪造女性的平均内容准确率分别为82.65%和78.83%,FID平均得分分别为32.14和34.50。 展开更多
关键词 深度伪造 深度学习 生成对抗网络 图像翻译 图像生成 人脸性别伪造
在线阅读 下载PDF
人脸伪造检测泛化性方法综述 被引量:5
13
作者 董琳 黄丽清 +3 位作者 叶锋 黄添强 翁彬 徐超 《计算机科学》 CSCD 北大核心 2022年第2期12-30,共19页
深度学习技术的快速发展为深度伪造的研究提供了强有力的工具,人眼越来越难区分伪造视频图像的真假。伪造的视频图像会对社会生活造成巨大的负面影响,如:金融欺诈、假新闻传播、人身欺凌等。目前,基于深度学习的假脸检测技术在多个基准... 深度学习技术的快速发展为深度伪造的研究提供了强有力的工具,人眼越来越难区分伪造视频图像的真假。伪造的视频图像会对社会生活造成巨大的负面影响,如:金融欺诈、假新闻传播、人身欺凌等。目前,基于深度学习的假脸检测技术在多个基准数据库(如FaceForensics++)上已经达到了较高的准确率,但在跨数据库上的检测精度远低于源数据库内的检测精度,即许多检测方法难以推广到不同的或未知的伪造类型上。专注于基于深度学习的人脸伪造检测方法泛化性研究,首先对伪造检测常用的数据库进行简单介绍和比较;其次从数据、特征和学习策略3个方面对视频图像篡改检测方法的泛化性进行分类总结和分析;最后讨论未来人脸篡改检测泛化性的发展方向和挑战。 展开更多
关键词 人脸伪造检测 视频图像篡改 泛化性 媒体取证 视频图像分类
在线阅读 下载PDF
基于重构误差的无监督人脸伪造视频检测 被引量:3
14
作者 许喆 王志宏 +2 位作者 单存宇 孙亚茹 杨莹 《计算机应用》 CSCD 北大核心 2023年第5期1571-1577,共7页
目前有监督的人脸伪造视频检测方法需要大量标注数据。为解决视频伪造方法迭代快、种类多等现实问题,将时序异常检测中的无监督思想引入人脸伪造视频检测,将伪造视频检测任务转为无监督的视频异常检测任务,提出一种基于重构误差的无监... 目前有监督的人脸伪造视频检测方法需要大量标注数据。为解决视频伪造方法迭代快、种类多等现实问题,将时序异常检测中的无监督思想引入人脸伪造视频检测,将伪造视频检测任务转为无监督的视频异常检测任务,提出一种基于重构误差的无监督人脸伪造视频检测模型。首先,抽取待检测视频中连续帧的人脸特征点序列;其次,基于偏移特征、局部特征、时序特征等多粒度信息对待检测视频中人脸特征点序列进行重构;然后,计算原始序列与重构序列之间的重构误差;最后,根据重构误差的波峰频率计算得分对伪造视频进行自动检测。实验结果表明,在FaceShifter、FaceSwap等人脸视频伪造方法上,与LRNet(Landmark Recurrent Network)、Xception-c23等检测方法相比,所提方法的检测性能的曲线下方面积(AUC)最多增加了27.6%,移植性能的AUC最多增加了30.4%。 展开更多
关键词 人脸伪造检测 无监督学习 时序异常检测 生成模型 人脸特征点
在线阅读 下载PDF
融合面部深度感知的音频驱动人脸重现方法
15
作者 彭雪康 孙国庆 +1 位作者 邵长乐 练智超 《指挥与控制学报》 CSCD 北大核心 2024年第3期365-371,共7页
人脸重现是一项条件面部生成任务,现有的基于音频驱动的人脸重现方法难以生成完整且高质量的人脸。针对这一问题,提出一种融合面部深度信息的音频驱动下的人脸重现方法。该方法采用了轻量级的模型框架以降低模型尺寸和提高运行速度。实... 人脸重现是一项条件面部生成任务,现有的基于音频驱动的人脸重现方法难以生成完整且高质量的人脸。针对这一问题,提出一种融合面部深度信息的音频驱动下的人脸重现方法。该方法采用了轻量级的模型框架以降低模型尺寸和提高运行速度。实验在AnnVI数据集上与3种最新的音频驱动人脸重现方法进行了比较。结果表明,所提出的融合面部深度感知的人脸重现方法,极大地提高了音频驱动下生成人脸图像的质量。 展开更多
关键词 人脸伪造 人脸重现 深度估计 多模态驱动 生成对抗网络
在线阅读 下载PDF
基于空频联合卷积神经网络的GAN生成人脸检测 被引量:6
16
作者 王金伟 曾可慧 +2 位作者 张家伟 罗向阳 马宾 《计算机科学》 CSCD 北大核心 2023年第6期216-224,共9页
生成式对抗网络(GAN)的快速发展使其在图像生成领域取得了前所未有的成功。StyleGAN等新型GAN的出现使得生成的图像更真实且具有欺骗性,对国家安全、社会稳定和个人隐私都构成了较大威胁。文中提出了一种基于空频联合的双流卷积神经网... 生成式对抗网络(GAN)的快速发展使其在图像生成领域取得了前所未有的成功。StyleGAN等新型GAN的出现使得生成的图像更真实且具有欺骗性,对国家安全、社会稳定和个人隐私都构成了较大威胁。文中提出了一种基于空频联合的双流卷积神经网络的检测模型。鉴于GAN图像在生成过程中因上采样操作在频谱上留下了清晰可辨的伪影,设计了可学习的频率域滤波核以及频率域网络来充分学习并提取频率域特征。为了减弱图像变换至频域过程中丢弃部分信息而带来的影响,同样设计了空间域网络来学习图像内容本身具有差异化的空间域特征,最终将两种特征融合来实现对GAN生成人脸图像的检测。在多个数据集上的实验结果表明,所提模型在高质量生成数据集上的检测精度及在跨数据集的泛化性上都优于现有算法,且对于JPEG压缩、随机剪裁、高斯模糊等图像变换具有更强的鲁棒性。不仅如此,所提方案在GAN生成的局部人脸数据集上也有不错表现,进一步证明了所提模型有着更好的通用性以及更加广泛的应用前景。 展开更多
关键词 数字图像取证 人脸伪造检测 卷积神经网络 生成式对抗网络 频率域
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部