期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
伪标签不确定性估计的源域无关鲁棒域自适应 被引量:3
1
作者 王帆 韩忠义 尹义龙 《软件学报》 EI CSCD 北大核心 2022年第4期1183-1199,共17页
无监督域自适应是解决训练集(源域)和测试集(目标域)分布不一致的有效途径之一.现有的无监督域自适应的理论和方法在相对封闭、静态的环境下取得了一定成功,但面向开放动态任务环境时,在隐私保护、数据孤岛等限制条件下,源域数据往往不... 无监督域自适应是解决训练集(源域)和测试集(目标域)分布不一致的有效途径之一.现有的无监督域自适应的理论和方法在相对封闭、静态的环境下取得了一定成功,但面向开放动态任务环境时,在隐私保护、数据孤岛等限制条件下,源域数据往往不可直接获取,现有无监督域自适应方法的鲁棒性将面临严峻的挑战.鉴于此,研究了一个更具挑战性却又未被充分探索的问题:源域无关的无监督域自适应,目标是仅依据预训练的源域模型和无标签目标域数据,实现源域向目标域的正向迁移.提出一种基于伪标签不确定性估计的源域无关鲁棒域自适应的方法PLUE-SFRDA(pseudo label uncertainty estimation for source free robust domain adaptation).PLUE-SFRDA的核心思想是:根据源域模型的预测结果,联合信息熵和能量函数充分挖掘目标域数据的隐含信息,探索类原型和类锚点,以准确估计目标域数据的伪标签,进而调优域自适应模型,实现源域数据无关的鲁棒域自适应.PLUESFRDA包含提出的二元软约束信息熵,解决了标准信息熵不能有效估计处于决策边界样本的不确定性的问题,增强了所挖掘的类原型和类锚点的可信度,进而提高了目标域伪标签估计的准确率.PLUE-SFRDA包含了提出的加权对比过滤方法,通过比较每个样本距离该类的类锚点和其他类的类锚点的加权距离,过滤掉处于决策边界的类别信息模糊样本,进一步提高了伪标签不确定性估计的安全性.PLUE-SFDRA还包含一个信息最大化损失,实现源域分类器和伪标签估计器迭代优化,逐渐将源域模型中蕴含的源域知识迁移至目标域,进一步提高了伪标签不确定性估计的鲁棒性.在Office-31,Office-Home和VisDA-C这3个公开的基准数据集上的大量实验表明:PLUE-SFRDA不仅超过了最新的源域无关的域自适应方法的表现,还显著优于现有的依赖源域数据的域自适应方法. 展开更多
关键词 无监督域自适应 源域无关的域自适应 伪标签学习 信息熵 能量函数 不确定性估计
在线阅读 下载PDF
基于反向伪标签最优化传输的无监督域自适应 被引量:1
2
作者 孙昊 韩忠义 +1 位作者 王帆 尹义龙 《计算机研究与发展》 EI CSCD 北大核心 2023年第8期1696-1710,共15页
现实世界中训练数据和测试数据往往存在分布差异,导致基于独立同分布假设的模型丧失鲁棒性.无监督域自适应是一种重要解决方法,极具应用价值.鉴于此,国内外研究者进行大量理论基础和方法技术的研究,促进了很多应用领域的发展,包括自动... 现实世界中训练数据和测试数据往往存在分布差异,导致基于独立同分布假设的模型丧失鲁棒性.无监督域自适应是一种重要解决方法,极具应用价值.鉴于此,国内外研究者进行大量理论基础和方法技术的研究,促进了很多应用领域的发展,包括自动驾驶、智慧医疗等.但是,目前主流的方法仍存在一些问题:源域和目标域的概率分布距离是否能真正代表它们之间的差异,以及如何更准确地度量2个分布之间的差异,仍然是一个值得探讨的问题.同时,如何更有效地利用伪标签,也是一个值得继续探索的问题.提出了反向伪标签最优化传输(backward pseudo-label and optimal transport,BPLOT),不仅利用瓦瑟斯坦距离和格罗莫夫-瓦瑟斯坦距离,从最优化特征-拓扑传输的角度更准确地计算了2个分布之间的差异;而且提出了反向验证伪标签的模块来更有效地利用伪标签,在训练过程中验证伪标签的质量.将所提出的方法在多个无监督域自适应的数据集上进行了实验验证.实验结果表明,BPLOT模型的效果超过了所有对比的基准方法. 展开更多
关键词 无监督域自适应 瓦瑟斯坦距离 格罗莫夫-瓦瑟斯坦距离 伪标签学习 最优化传输
在线阅读 下载PDF
半监督TS网络模型在齿轮故障诊断中的应用
3
作者 陈保家 阮宇豪 +3 位作者 陈法法 肖文荣 李公法 陶波 《机械科学与技术》 CSCD 北大核心 2024年第7期1249-1256,共8页
为解决在工业大数据条件下,有标签样本少导致机械故障诊断准确率低的问题,提出了一种半监督神经网络模型。该方法采用协同训练的方式,从时域和频域两个维度训练教师网络(T),将无标签数据转化为高质量的伪标签数据。再利用转化后的伪标... 为解决在工业大数据条件下,有标签样本少导致机械故障诊断准确率低的问题,提出了一种半监督神经网络模型。该方法采用协同训练的方式,从时域和频域两个维度训练教师网络(T),将无标签数据转化为高质量的伪标签数据。再利用转化后的伪标签数据训练学生网络(S),通过对数据进行评判和计分,避免网络过拟合。最后通过得分函数,对伪标签数据进行阶梯筛选成为有标签数据。齿轮故障诊断结果表明:TS网络在仅有少量有标签数据的情况下,故障分类准确率达90.31%,与其他半监督方法相比,准确率高出15%~20%。在信噪比(SNR)为5、0、-5的条件下,模型可以达到86.81%、78.00%、52.78%的诊断准确率。 展开更多
关键词 齿轮故障诊断 伪标签学习 抗噪性 协同训练
在线阅读 下载PDF
深度嵌入关系空间下齿轮箱标记样本扩充及其半监督故障诊断方法 被引量:15
4
作者 吕枫 王义 +2 位作者 阮胡林 秦毅 王平 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第2期55-65,共11页
针对只有少量标记样本的情况下,传统的基于深度学习的齿轮箱故障诊断方法训练出来的深度模型泛化能力差并且容易发生过拟合的问题,提出了一种基于深度嵌入关系空间下齿轮箱标记样本扩充的齿轮箱半监督故障诊断方法。该方法将少量的有标... 针对只有少量标记样本的情况下,传统的基于深度学习的齿轮箱故障诊断方法训练出来的深度模型泛化能力差并且容易发生过拟合的问题,提出了一种基于深度嵌入关系空间下齿轮箱标记样本扩充的齿轮箱半监督故障诊断方法。该方法将少量的有标记振动信号以成对的输入方式输入到关系网络中进行监督训练,然后以有标记振动信号为参考,将大量的无标记振动信号输入到训练好的关系网络中,建立有标记信号与无标记信号的嵌入关系空间。在关系空间中将具有最大相似的无标记信号被挑选出,并赋予其预测标记作为伪标签添加到有标记振动信号集中,重复上述步骤以进行有标记样本集扩充,以提高关系网络的泛化能力,当关系网络训练好后用于机械故障诊断,实现故障的诊断及分类。实验结果表明:利用本诊断方法处理只有少量标记样本的齿轮振动信号时,成功地实现了少量标记样本的扩充,并取得了优于传统的监督和半监督故障诊断方法的齿轮箱故障辨识效果。 展开更多
关键词 关系网络 半监督学习 齿轮箱故障诊断 伪标签学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部