The viscous flow in a wavy channel with convective boundary conditions is investigated. The channel is filled with a porous viscous fluid. Two cases of equal and different external convection coefficients on the walls...The viscous flow in a wavy channel with convective boundary conditions is investigated. The channel is filled with a porous viscous fluid. Two cases of equal and different external convection coefficients on the walls are taken into account. Effect of viscous dissipation is also considered. The governing equations are derived employing long wavelength and low Reynolds number approximations. Exact closed form solutions are obtained for the simplified equations. Important physical features for peristaltic flow caused by the wavy wave are pumping, trapping and heat transfer rate at the channel walls. These are discussed one by one in depth and detail through graphical illustrations. Special attention has been given to the effects of convective boundary conditions. The results show that for Bi1≠Bi2, there exists a critical value of Brinkman number Brc at which the temperatures of both the walls become equal. And, for Bi1>Bi2 and Br>Brc, the temperature of the cold wall exceeds the temperature of hot wall.展开更多
Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and therm...Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.展开更多
Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iterat...Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
From the viewpoints of environmental conservation and energy efficiency,seawater-source heat pump system(SWHP) to provide district cooling and heating is applied in coastal areas.Based on the system,a heat transfer mo...From the viewpoints of environmental conservation and energy efficiency,seawater-source heat pump system(SWHP) to provide district cooling and heating is applied in coastal areas.Based on the system,a heat transfer model was established for cast heat exchanger(CHE) adopted by SWHP systems.The CHE consists of pipes immersed in the seawater and used for transferring heat between the seawater and the heat exchanger pipes of SWHP system.An experimental study was carried out to test the validity of the model.A program was developed in VB language and the effects of inlet temperature,flow rate of the secondary refrigerant and length of CHE on the results were investigated.The results of the numerical simulation are in consistence with the experiments in both winter and summer conditions.As a result,application of SWHP systems with CHE in coastal areas in China is feasible due to the favorable geographical conditions and environment.展开更多
文摘The viscous flow in a wavy channel with convective boundary conditions is investigated. The channel is filled with a porous viscous fluid. Two cases of equal and different external convection coefficients on the walls are taken into account. Effect of viscous dissipation is also considered. The governing equations are derived employing long wavelength and low Reynolds number approximations. Exact closed form solutions are obtained for the simplified equations. Important physical features for peristaltic flow caused by the wavy wave are pumping, trapping and heat transfer rate at the channel walls. These are discussed one by one in depth and detail through graphical illustrations. Special attention has been given to the effects of convective boundary conditions. The results show that for Bi1≠Bi2, there exists a critical value of Brinkman number Brc at which the temperatures of both the walls become equal. And, for Bi1>Bi2 and Br>Brc, the temperature of the cold wall exceeds the temperature of hot wall.
文摘Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.
基金Foundation item: Projects(60835005, 90820302) supported by the National Natural Science Foundation of China Project(2007CB311001) supported by the National Basic Research Program of China
文摘Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
基金Project(2006BAJ04A15-03) supported by the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period
文摘From the viewpoints of environmental conservation and energy efficiency,seawater-source heat pump system(SWHP) to provide district cooling and heating is applied in coastal areas.Based on the system,a heat transfer model was established for cast heat exchanger(CHE) adopted by SWHP systems.The CHE consists of pipes immersed in the seawater and used for transferring heat between the seawater and the heat exchanger pipes of SWHP system.An experimental study was carried out to test the validity of the model.A program was developed in VB language and the effects of inlet temperature,flow rate of the secondary refrigerant and length of CHE on the results were investigated.The results of the numerical simulation are in consistence with the experiments in both winter and summer conditions.As a result,application of SWHP systems with CHE in coastal areas in China is feasible due to the favorable geographical conditions and environment.