A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal def...A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.展开更多
To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion chara...To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system,combined with FLACS software,under different vented conditions.The numerical simulation results of methane explosion are basically consistent with the physical experiment results,which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice.The results show that explosion parameters(pressure,temperature and product concentration)of methane at five volume fractions have the same change trend.Nevertheless,the explosion intension of 10.0%methane is the largest and that of 9.5%methane is relatively weak,followed by 11.0%methane,8.0%methane and 7.0%methane respectively.Under different vented conditions,the pressure and temperature of methane explosion are the highest in the pipeline without a vent,followed by the pipeline where ignition or vent position is in each end,and those are the lowest in the pipeline with ignition and vent at the same end.There is no significant effect on final product concentration of methane explosion under three vented conditions.For coal mine tunnel,it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly.In addition,when the branch roadway is longer or its section is larger,the peak pressure of airproof wall reduces slightly.展开更多
In order to research spread law and distribution law of temperature nearby fire sources on roadway in mine, according to combustion theory and other basic, the theory model of temperature attenuation was determined un...In order to research spread law and distribution law of temperature nearby fire sources on roadway in mine, according to combustion theory and other basic, the theory model of temperature attenuation was determined under unsteady heat-exchange between wind and roadway wall. The full-size roadway fire simulation experiments were carried out in Chongqing Research Institute of China Coal Technology & Engineering Group Corporation. The development processes of mine fire and flow pattern of high temperature gas were analyzed. Experimental roadway is seen as physical model, and through using CFD software, the processes of mine fire have been simulated on computer. The results show that, after fire occurs, if the wind speed is less than the minimum speed which can prevent smoke from rolling back, then the smaller wind speed can cause smoke to roll back easily. Hot plume will lead to secondary disasters in upwind side. Because of roadway wall, hot plume released from roadway fire zone has caused the occurrence of the ceiling jet, and the hot plume has been forced down. Whereas, owing to the higher temperature, buoyancy effect is more obvious. Therefore, smoke rises gradually along the roadway in the flow process, and the hierarchical interface appears wavy.Oxygen-enriched combustion and fuel-enriched combustion are the two kinds of combustion states of fire. The oxygen content of downwind side of fire is maintained at around 15% for oxygen-enriched combustion, and the oxygen content of downwind side of fire is maintained at around 2% for fuel-enriched combustion. Furthermore, fuel-enriched combustion can lead to secondary disasters easily.展开更多
基金Project(2009318000046) supported by the Western Transport Technical Program of the Ministry of Transport,China
文摘A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.
基金Project(51674193)supported by the National Natural Science Foundation of ChinaProject(2019-JLM-9)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2019-M-663780)supported by the Postdoctoral Science Foundation,China。
文摘To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system,combined with FLACS software,under different vented conditions.The numerical simulation results of methane explosion are basically consistent with the physical experiment results,which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice.The results show that explosion parameters(pressure,temperature and product concentration)of methane at five volume fractions have the same change trend.Nevertheless,the explosion intension of 10.0%methane is the largest and that of 9.5%methane is relatively weak,followed by 11.0%methane,8.0%methane and 7.0%methane respectively.Under different vented conditions,the pressure and temperature of methane explosion are the highest in the pipeline without a vent,followed by the pipeline where ignition or vent position is in each end,and those are the lowest in the pipeline with ignition and vent at the same end.There is no significant effect on final product concentration of methane explosion under three vented conditions.For coal mine tunnel,it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly.In addition,when the branch roadway is longer or its section is larger,the peak pressure of airproof wall reduces slightly.
基金Projects(51274099,51474106)supported by the National Natural Science Foundation of ChinaProject(10C0660)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘In order to research spread law and distribution law of temperature nearby fire sources on roadway in mine, according to combustion theory and other basic, the theory model of temperature attenuation was determined under unsteady heat-exchange between wind and roadway wall. The full-size roadway fire simulation experiments were carried out in Chongqing Research Institute of China Coal Technology & Engineering Group Corporation. The development processes of mine fire and flow pattern of high temperature gas were analyzed. Experimental roadway is seen as physical model, and through using CFD software, the processes of mine fire have been simulated on computer. The results show that, after fire occurs, if the wind speed is less than the minimum speed which can prevent smoke from rolling back, then the smaller wind speed can cause smoke to roll back easily. Hot plume will lead to secondary disasters in upwind side. Because of roadway wall, hot plume released from roadway fire zone has caused the occurrence of the ceiling jet, and the hot plume has been forced down. Whereas, owing to the higher temperature, buoyancy effect is more obvious. Therefore, smoke rises gradually along the roadway in the flow process, and the hierarchical interface appears wavy.Oxygen-enriched combustion and fuel-enriched combustion are the two kinds of combustion states of fire. The oxygen content of downwind side of fire is maintained at around 15% for oxygen-enriched combustion, and the oxygen content of downwind side of fire is maintained at around 2% for fuel-enriched combustion. Furthermore, fuel-enriched combustion can lead to secondary disasters easily.