锂电池荷电状态(SOC)的准确估计是电池管理系统的关键技术,为了解析传感器误差对SOC估计精度的影响,以二阶RC等效电路模型为基础,运用遗传算法进行参数辨识,采用扩展Kalman滤波算法进行SOC估计,分析电压、电流传感器存在的漂移和白噪声...锂电池荷电状态(SOC)的准确估计是电池管理系统的关键技术,为了解析传感器误差对SOC估计精度的影响,以二阶RC等效电路模型为基础,运用遗传算法进行参数辨识,采用扩展Kalman滤波算法进行SOC估计,分析电压、电流传感器存在的漂移和白噪声对SOC估计的影响。结果表明:电压、电流传感器的漂移与SOC估计误差的均值近似呈线性关系,电压、电流传感器存在的白噪声对SOC估计误差的均值无影响;对于实验中的三元锂离子电池,若使SOC估计精度在5%以内,电压的偏差值应控制在10 m V以内、电流偏差值应在1/30 C以内。展开更多
针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并...针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。展开更多
文摘锂电池荷电状态(SOC)的准确估计是电池管理系统的关键技术,为了解析传感器误差对SOC估计精度的影响,以二阶RC等效电路模型为基础,运用遗传算法进行参数辨识,采用扩展Kalman滤波算法进行SOC估计,分析电压、电流传感器存在的漂移和白噪声对SOC估计的影响。结果表明:电压、电流传感器的漂移与SOC估计误差的均值近似呈线性关系,电压、电流传感器存在的白噪声对SOC估计误差的均值无影响;对于实验中的三元锂离子电池,若使SOC估计精度在5%以内,电压的偏差值应控制在10 m V以内、电流偏差值应在1/30 C以内。
文摘针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。