Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Fir...Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.展开更多
A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line s...A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.展开更多
Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fract...Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fracture tests:three-point bending (TPB) and wedge splitting (WS).In the tests,the values of CTODc were experimentally recorded using a novel technique,in which fiber Bragg grating (FBG) sensors were used,and two traditional techniques,in which strain gauges and clip gauges were deployed.The values of CTODc of tested concrete were also predicted using two existing analytical formulae proposed by JENQ & SHAH and XU,respectively.It is found that the values of CTODc obtained by both experimental measurements and analytical formulae exhibit a negligible variation as the compressive strength of concrete increases,and the test geometry adopted has little impact on the value of CTODc.Regarding the experimental measurement of CTODc,the clip gauge method generally leads to a larger value of CTODc and shows a more significant scatter as compared with the other two methods,while the strain gauge method leads to a slightly lower CTODc as compared with the FBG sensor method.The analytical formula proposed by JENQ and SHAH is found to generally lead to an overestimation,while the analytical formula proposed by XU shows a good accuracy.展开更多
文摘Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.
基金Project(61174018) supported by National Natural Science Foundation, ChinaProject(ZR2011FQ025) supported by the Natural Science Foundation of Shandong Province ChinaProject(2010GN066) supported by the Independent Innovation Foundation of Shandong University, China
文摘A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.
基金Project(50438010) supported by the Key Program of the National Natural Science Foundation of ChinaProject(JGZXJJ2006-13) supported by the Research and Application Programs of Key Technologies for Major Constructions in the South-North Water Transfer Project Construction in China
文摘Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fracture tests:three-point bending (TPB) and wedge splitting (WS).In the tests,the values of CTODc were experimentally recorded using a novel technique,in which fiber Bragg grating (FBG) sensors were used,and two traditional techniques,in which strain gauges and clip gauges were deployed.The values of CTODc of tested concrete were also predicted using two existing analytical formulae proposed by JENQ & SHAH and XU,respectively.It is found that the values of CTODc obtained by both experimental measurements and analytical formulae exhibit a negligible variation as the compressive strength of concrete increases,and the test geometry adopted has little impact on the value of CTODc.Regarding the experimental measurement of CTODc,the clip gauge method generally leads to a larger value of CTODc and shows a more significant scatter as compared with the other two methods,while the strain gauge method leads to a slightly lower CTODc as compared with the FBG sensor method.The analytical formula proposed by JENQ and SHAH is found to generally lead to an overestimation,while the analytical formula proposed by XU shows a good accuracy.