期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
微信会话文本关键词提取的算法研究
1
作者 王宝会 许卜仁 +1 位作者 李长傲 叶子豪 《计算机科学》 北大核心 2025年第S1期239-246,共8页
微信群组中存在大量会话文本数据,对其进行关键词提取有助于理解群组动态和主题演变。由于微信会话文本存在长度短、主题交叉、语言不规范等特点,传统提取方法效果欠佳。为此,提出了一个基于会话主题聚类的多阶段关键词提取算法。首先,... 微信群组中存在大量会话文本数据,对其进行关键词提取有助于理解群组动态和主题演变。由于微信会话文本存在长度短、主题交叉、语言不规范等特点,传统提取方法效果欠佳。为此,提出了一个基于会话主题聚类的多阶段关键词提取算法。首先,提出了一种结合预训练知识的会话主题聚类算法(Single Pass Using Thread Segmentation and Pre-training Knowledge,SP_(TSPK)),综合考虑语义相关性、消息活跃度和用户亲密度,有效解决了会话主题交叉和信息量不足的问题。其次,设计了一种多阶段关键词提取算法(Multi-Stage Keyword Extraction,MSKE),将任务分解为无监督关键词抽取和有监督关键词生成,有效提取原文中存在和缺失的关键词,减少了候选词规模和语义冗余;最终,组合SP_(TSPK)算法与MSKE算法实现微信会话文本关键词提取。在WeChat数据集上相比AutoKeyGen算法,F_(1)@5和F_(1)@O平均提升了12.8%与10.8%,R@10平均达到其2.59倍。实验结果表明,该算法能有效地提取微信会话文本关键词。 展开更多
关键词 文本 文本生成 会话主题聚类 关键词提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部