纤维长度和强度是陆地棉(Gossypium hirsutum L.)纤维品质性状中的2个关键性状,其遗传基础的解析对优质棉品种培育具有重要意义。本研究以315个陆地棉品种(系)为关联分析群体,利用混合线性模型(MLM,mixed linear model)对来自5个环境的...纤维长度和强度是陆地棉(Gossypium hirsutum L.)纤维品质性状中的2个关键性状,其遗传基础的解析对优质棉品种培育具有重要意义。本研究以315个陆地棉品种(系)为关联分析群体,利用混合线性模型(MLM,mixed linear model)对来自5个环境的纤维长度和强度进行全基因组关联分析(GWAS,genome-wide association study)。结果表明,5个环境下纤维长度和强度的表型值均呈现出一定的差异,且广义遗传力较高,纤维长度变异系数为3.97%~8.44%,纤维强度变异系数为7.85%~11.26%。方差分析表明,基因型、环境和基因型×环境互作对纤维长度和强度均有极显著影响(P<0.001)。聚类分析和群体结构分析表明,315份材料可分为2个类群。GWAS共检测到5个与纤维长度和强度显著关联的SNP,其中位点D12_57032285与纤维长度和强度均显著关联。与纤维长度显著关联3个SNP位点,分别位于A05、D11和D12染色体上,解释8.05%、12.47%和8.79%的表型变异,优异等位变异类型分别为A05_15144433(AA)、D11_24483544(TT)和D12_57032285(CC);与纤维强度显著关联3个SNP位点,分别位于A08、D09和D12染色体上,解释9.03%、7.94%和7.90%的表型变异,优异等位变异类型分别为A08_84604654(TT)、D09_43463271(TT)和D12_57032285(CC)。通过两组不同转录组数据的基因表达模式分析,筛选出30个可能与纤维发育相关的候选基因。通过GO富集分析和KEGG代谢途径分析发现,候选基因主要参与蛋白质或蛋白质复合物及5′-三磷酸腺苷(ATP)选择性且非共价地相互作用,代谢途径主要为核糖体代谢途径。本研究结果可为棉花纤维品质性状的分子遗传改良提供理论依据。展开更多
选用204对SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM(general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴...选用204对SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM(general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴别出一批与农艺、加工性状关联的优异等位变异及携带优异等位变异的载体材料;进一步分析极值表型材料的遗传构成。结果表明:(1)累计51个位点(次)与性状关联,有些标记同时与2个或多个性状相关联,可能是性状相关的遗传基础;关联位点中累计16位点(次)与连锁分析定位的QTL一致;(2)与地方品种群体和育成品种群体的关联位点比较,发现野生群体关联位点只有少数与之相同,群体间育种性状的遗传结构有明显差异。(3)与多性状关联的位点其等位变异对不同性状的效应方向可相同可不同,如GMES5532a-A332对百粒重和耐淹性的相对死苗率都是增效效应,而GMES5532a-A344对百粒重是减效效应,对相对死苗率是增效效应;(4)极值表型材料间的遗传构成有很大差异。表型值大的材料携带较多增效效应大的位点等位变异,例如N23349的百粒重是9.08g,含有4个增效效应较大的位点等位变异;表型值小的材料携带较多减效效应大的位点等位变异,如N23387的百粒重是0.75g,含有4个减效效应较大的位点等位变异。关联作图得到的信息可以弥补连锁定位信息的不足,尤其是全基因组位点上复等位变异的信息为育种提供了亲本选配和后代等位条带辅助选择的依据。展开更多
文摘纤维长度和强度是陆地棉(Gossypium hirsutum L.)纤维品质性状中的2个关键性状,其遗传基础的解析对优质棉品种培育具有重要意义。本研究以315个陆地棉品种(系)为关联分析群体,利用混合线性模型(MLM,mixed linear model)对来自5个环境的纤维长度和强度进行全基因组关联分析(GWAS,genome-wide association study)。结果表明,5个环境下纤维长度和强度的表型值均呈现出一定的差异,且广义遗传力较高,纤维长度变异系数为3.97%~8.44%,纤维强度变异系数为7.85%~11.26%。方差分析表明,基因型、环境和基因型×环境互作对纤维长度和强度均有极显著影响(P<0.001)。聚类分析和群体结构分析表明,315份材料可分为2个类群。GWAS共检测到5个与纤维长度和强度显著关联的SNP,其中位点D12_57032285与纤维长度和强度均显著关联。与纤维长度显著关联3个SNP位点,分别位于A05、D11和D12染色体上,解释8.05%、12.47%和8.79%的表型变异,优异等位变异类型分别为A05_15144433(AA)、D11_24483544(TT)和D12_57032285(CC);与纤维强度显著关联3个SNP位点,分别位于A08、D09和D12染色体上,解释9.03%、7.94%和7.90%的表型变异,优异等位变异类型分别为A08_84604654(TT)、D09_43463271(TT)和D12_57032285(CC)。通过两组不同转录组数据的基因表达模式分析,筛选出30个可能与纤维发育相关的候选基因。通过GO富集分析和KEGG代谢途径分析发现,候选基因主要参与蛋白质或蛋白质复合物及5′-三磷酸腺苷(ATP)选择性且非共价地相互作用,代谢途径主要为核糖体代谢途径。本研究结果可为棉花纤维品质性状的分子遗传改良提供理论依据。
文摘选用204对SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM(general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴别出一批与农艺、加工性状关联的优异等位变异及携带优异等位变异的载体材料;进一步分析极值表型材料的遗传构成。结果表明:(1)累计51个位点(次)与性状关联,有些标记同时与2个或多个性状相关联,可能是性状相关的遗传基础;关联位点中累计16位点(次)与连锁分析定位的QTL一致;(2)与地方品种群体和育成品种群体的关联位点比较,发现野生群体关联位点只有少数与之相同,群体间育种性状的遗传结构有明显差异。(3)与多性状关联的位点其等位变异对不同性状的效应方向可相同可不同,如GMES5532a-A332对百粒重和耐淹性的相对死苗率都是增效效应,而GMES5532a-A344对百粒重是减效效应,对相对死苗率是增效效应;(4)极值表型材料间的遗传构成有很大差异。表型值大的材料携带较多增效效应大的位点等位变异,例如N23349的百粒重是9.08g,含有4个增效效应较大的位点等位变异;表型值小的材料携带较多减效效应大的位点等位变异,如N23387的百粒重是0.75g,含有4个减效效应较大的位点等位变异。关联作图得到的信息可以弥补连锁定位信息的不足,尤其是全基因组位点上复等位变异的信息为育种提供了亲本选配和后代等位条带辅助选择的依据。