期刊文献+
共找到4,559篇文章
< 1 2 228 >
每页显示 20 50 100
基于贝叶斯优化LSTM神经网络的飞机货舱火源定位
1
作者 张伟 常本强 +1 位作者 杨旭 熊枭 《北京航空航天大学学报》 北大核心 2025年第9期2979-2986,共8页
民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网... 民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网络充分挖掘多种火灾特征时序数据(烟雾、温度、CO浓度)与火灾源点的时空关联特性,同时采用贝叶斯算法搜寻LSTM神经网络的最优超参数组合以提高模型的鲁棒性和准确性。通过仿真研究验证BO-LSTM模型,使用Pyrosim火灾模拟软件以1∶1比例建立了8个常用民航飞机货舱模型,并在每个模型中随机选取10个火源点进行低温低压环境的火灾仿真。实验结果表明:所建模型预测火源中心点距离实际火源中心点的直线距离误差皆小于0.1m,预测火源二维坐标皆处于真实火源的范围内。贝叶斯优化过的LSTM神经网络极大提高了传统LSTM神经网络的性能,适用于低温低压状态下的飞机货舱火源定位。 展开更多
关键词 飞机货舱 低温低压 火源定位 贝叶斯优化 lstm神经网络 Pyrosim软件
在线阅读 下载PDF
基于优化CNN-BiLSTM神经网络的间歇精馏过程建模
2
作者 郭旭 贾继宁 姚克俭 《化工学报》 北大核心 2025年第9期4613-4629,共17页
间歇式精馏因其操作灵活性和适应性广泛应用于精细化工、制药及食品加工等行业,然而其非稳态特性和显著变化的操作条件使得传统静态模型难以精确描述系统动态行为,最终导致物质在塔内的分离效果不佳。为此本研究以乙醇-水二元混合物体... 间歇式精馏因其操作灵活性和适应性广泛应用于精细化工、制药及食品加工等行业,然而其非稳态特性和显著变化的操作条件使得传统静态模型难以精确描述系统动态行为,最终导致物质在塔内的分离效果不佳。为此本研究以乙醇-水二元混合物体系间歇精馏塔馏出液和塔釜乙醇质量分数数据为研究对象,提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)复合的预测软测量模型(CNN-BiLSTM),并通过改进的雪消融优化器(improved snow ablation optimizer,ISAO)优化模型超参数,旨在使其能够替代在线测量仪对间歇精馏控制起到辅助作用。实验结果表明,在馏出液和塔釜乙醇质量分数预测中,经过ISAO优化后的CNN-BiLSTM神经网络在测试集上的均方根误差和平均绝对误差相较于初始模型降幅至少为82.27%,其动态预测性能显著提升。 展开更多
关键词 间歇式 二元混合物 分离 神经网络 超参数优化 优化算法
在线阅读 下载PDF
响应面法结合深度神经网络优化刺五加果多糖提取工艺 被引量:3
3
作者 苏适 董立强 +3 位作者 黎莉 王双侠 王喜庆 张金凤 《包装与食品机械》 北大核心 2025年第2期66-74,共9页
为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型... 为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型;利用DNN模型解析多因素间非线性关系,优化工艺条件。结果表明,DNN模型得到的最优工艺条件为微波功率350 W、离子液体浓度0.6 mol/L、提取时间35 min、料液比1∶24(g/mL),多糖提取率为16.71%,高于响应面法优化的提取工艺结果。体外抗氧化试验显示,刺五加果多糖对羟基自由基、DPPH自由基和ABTS^(+)·自由基的半数抑制浓度(IC_(50))分别为2.36,2.05,2.47 mg/mL。研究为刺五加果在功能性食品及抗衰老保健品开发中的应用提供理论依据。 展开更多
关键词 刺五加果 多糖 工艺优化 响应面法 深度神经网络 抗氧化活性
在线阅读 下载PDF
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测 被引量:1
4
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向lstm 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于神经网络的光纤温度估算方法的优化 被引量:1
5
作者 李苏雅 董艳唯 +4 位作者 李琳 张弛 李楠 宁琦 陈永辉 《光通信研究》 北大核心 2025年第1期83-88,共6页
【目的】为了有效估算基于布里渊散射的分布式光纤传感中光纤的温度,文章将多层前馈人工神经网络(ANN)应用于温度的估算。【方法】文章在Matlab软件中编写了用于光纤温度计算的单斜坡法、基于伪Voigt模型的最小二乘拟合法和ANN程序,同... 【目的】为了有效估算基于布里渊散射的分布式光纤传感中光纤的温度,文章将多层前馈人工神经网络(ANN)应用于温度的估算。【方法】文章在Matlab软件中编写了用于光纤温度计算的单斜坡法、基于伪Voigt模型的最小二乘拟合法和ANN程序,同时仿真产生了不同信噪比(SNR)下的布里渊谱,采用以上3种算法计算了光纤温度,验证了ANN方法的有效性。在此基础上基于以上仿真产生的布里渊谱研究了ANN的关键参数,即隐层数量、隐层神经元数量和训练目标对训练速度、温度计算时间和准确性的影响规律。【结果】结果表明,ANN方法在SNR为22和37 dB时最大温度误差分别仅为1.18和0.63℃,且计算时间仅为最小二乘拟合法的1/1000左右。当隐层神经元数量不变时,随着隐层层数的增加,训练时间明显下降,计算时间线性增加,但其对温度估算的准确性几乎无影响;随着隐层神经元数量的增加,训练时间和计算时间均增加,隐层有21个神经元时,训练时间近似为1个神经元的67倍,但其对温度估算的准确性几乎无影响;训练目标(布里渊频移误差的平方)小于临界值(约为1 MHz 2)时,随着训练目标的增加,温度误差几乎不变,超过临界值后,随着训练目标的增加,温度误差增大。【结论】采用多层前馈ANN应用于基于布里渊散射的分布式光纤传感中的光纤温度估算时,建议选择单隐层且隐层神经元选择1个,训练目标选择1 MHz 2。 展开更多
关键词 分布式光纤传感 布里渊散射 布里渊频移 人工神经网络 温度 优化
在线阅读 下载PDF
基于神经网络代理模型的门式墩优化方法及软件研发 被引量:1
6
作者 柏华军 《铁道标准设计》 北大核心 2025年第3期106-112,共7页
针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化... 针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化数学模型;然后,基于有限元法构建门式墩训练样本集,采用拉丁超立方开展试验设计,建立BPNN神经网络代理模型;最后,采用NSGAII遗传优化算法对BPNN神经网络代理模型进行搜索,实现门式墩最优结构尺寸和钢束线形的搜索推荐。依托某门式墩结构设计,开展算法有效性和效率验证,结果表明,案例的优化时间由有限元法的45 h缩短至智能优化算法的15 min,优化算法在保证预测精度的同时提高优化效率180倍。 展开更多
关键词 铁路桥梁 门式墩 结构优化 BP神经网络 代理模型 多目标优化 NSGAII算法 拉丁超立方设计
在线阅读 下载PDF
基于FS-SIA的毁伤预测神经网络超参数优化方法
7
作者 佘维 吕钟毓 +3 位作者 邢召伟 王世豪 徐旺旺 田钊 《郑州大学学报(理学版)》 CAS 北大核心 2025年第2期1-7,共7页
针对毁伤预测中神经网络超参数设置及调试过程较为复杂的问题,提出一种基于特征选择结合群体智能(feature selection and swarm intelligence algorithm,FS-SIA)的超参数优化方法,用于在毁伤预测中对神经网络进行超参数的搜索和优化。首... 针对毁伤预测中神经网络超参数设置及调试过程较为复杂的问题,提出一种基于特征选择结合群体智能(feature selection and swarm intelligence algorithm,FS-SIA)的超参数优化方法,用于在毁伤预测中对神经网络进行超参数的搜索和优化。首先,通过多种特征排序方法确定毁伤特征的重要性,选取公共的特征偏序子集用于模型训练。其次,针对具体的神经网络模型,分别采用多种群体智能算法进行超参数的搜索和优化。最后,得出特征集性能最优的超参数训练模型。实验结果表明,相较于未经特征排序而单纯采用群体智能算法的其他超参数优化模型,所提方法在毁伤预测中具有更快的收敛速度和更高的准确率。 展开更多
关键词 神经网络 超参数优化 特征选择 群体智能 毁伤预测
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
8
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于NSGA-Ⅱ和神经网络的长短叶片泵双目标参数优化
9
作者 梁兴 马志巍 +2 位作者 熊文龙 周泊 曹寒问 《水电能源科学》 北大核心 2025年第3期163-167,共5页
针对长短叶片泵参数优化问题,以叶片进口角、叶片出口角和叶片数量为变量,以泵扬程、效率为优化目标,采用拉丁超立方设计40组试验组成样本集,并利用CFD方法计算泵性能。在数值模拟的基础上,基于BP神经网络泵性能预测模型构建长短叶片泵... 针对长短叶片泵参数优化问题,以叶片进口角、叶片出口角和叶片数量为变量,以泵扬程、效率为优化目标,采用拉丁超立方设计40组试验组成样本集,并利用CFD方法计算泵性能。在数值模拟的基础上,基于BP神经网络泵性能预测模型构建长短叶片泵双目标优化函数,并采用NSGA-Ⅱ算法寻优,进而开展双目标泵参数优化研究。结果表明,基于BP神经网络预测泵性能较准确,其中效率偏差最大为1.98%,扬程偏差最大为1.82%。NSGA-Ⅱ算法所获得的最优方案在额定工况下比原型泵扬程、效率分别提高了7.4%、1.8%;对比优化前后泵内流速分布、压力脉动等,最优方案有效改善了流动的均匀性,减小了水力损失和压力脉动,使得叶轮内部流动更加稳定,为长短叶片泵参数优化设计提供了理论依据。 展开更多
关键词 长短叶片泵 性能优化 神经网络 NSGA-Ⅱ算法
在线阅读 下载PDF
联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制
10
作者 周阿连 于子茵 刘刚 《机械设计与制造》 北大核心 2025年第6期69-74,共6页
为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛... 为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛精度。设计改进的RBF神经网络,采用改进核FCM聚类算法(improved KFCM,IKFCM)初始化RBF神经网络中心,利用改进的PIO(improved PIO,IPIO)优化RBF神经网络参数配置。最后,利用IPIO和IKFCM优化后的RBF神经网络对PID参数进行自适应调整。与其它车速控制方法相比,所提方法车速控制精度提高了约1.2%,能够精准实现对机器人车速的控制。 展开更多
关键词 机器人 鸽群优化算法 RBF神经网络 PID控制 精度
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
11
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 BP神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
基于图神经网络的SDN路由算法优化
12
作者 张晓莉 汤颖琪 宋婉莹 《电讯技术》 北大核心 2025年第1期18-24,共7页
针对现有路由方案不适合学习图形结构信息,对陌生拓扑适应性不佳的问题,提出了一种基于图神经网络的软件定义网络(Software Defined Network,SDN)路由算法G-PPO。引入近端策略优化(Proximal Policy Optimization,PPO)强化学习算法实现... 针对现有路由方案不适合学习图形结构信息,对陌生拓扑适应性不佳的问题,提出了一种基于图神经网络的软件定义网络(Software Defined Network,SDN)路由算法G-PPO。引入近端策略优化(Proximal Policy Optimization,PPO)强化学习算法实现模型训练,利用消息传递神经网络(Massage Passing Neural Network,MPNN)对网络拓扑进行学习,通过调整链路权重完成路由路径的调整。G-PPO将图神经网络对网络拓扑信息的感知能力和深度强化学习的自主学习能力有效结合,提升路由策略的性能。实验结果表明,与相关算法比较,所提算法的平均时延和丢包率、网络链路利用率和吞吐量指标均为最优。在3种不同拓扑上,该算法较其他算法最少提升10.5%吞吐量,最多提升95.6%丢包率,表明所提算法具有更好的适应不同网络拓扑的能力。 展开更多
关键词 软件定义网络 路由优化 神经网络 深度强化学习 近端策略优化
在线阅读 下载PDF
基于遗传算法和神经网络的真空灭弧室电场优化方法研究
13
作者 董华军 李东恒 +2 位作者 李金金 赵一鉴 张传龙 《电机与控制学报》 北大核心 2025年第9期147-158,共12页
合理布置灭弧室内部结构以实现场强均匀分布是避免其产生绝缘击穿破坏的有效途径。针对于此,本文提出了一种基于神经网络和遗传算法的灭弧室结构参数优化方法;建立12 kV真空灭弧室电场模型,分析了主屏蔽罩不同参数下的电场分布。通过正... 合理布置灭弧室内部结构以实现场强均匀分布是避免其产生绝缘击穿破坏的有效途径。针对于此,本文提出了一种基于神经网络和遗传算法的灭弧室结构参数优化方法;建立12 kV真空灭弧室电场模型,分析了主屏蔽罩不同参数下的电场分布。通过正交回归方法和BP神经网络构建主屏蔽罩结构参数与灭弧室最大场强、场强均匀度的映射模型;以最大场强、场强均匀度为评价指标,引入遗传算法对主屏蔽罩结构进行迭代优化,最后分析屏蔽罩材料对灭弧室绝缘性能的影响。结果表明,灭弧室场强数值随着屏蔽罩直径的增加而减小,随着屏蔽罩厚度的增加而增长,随着外卷裙边角度的增加而减小;选择不锈钢作为主屏蔽罩材料可使灭弧室兼具成本低廉以及绝缘性能优异等优势;相较于未优化的灭弧室初始结构,经本文方法优化后的灭弧室电场最大值降低了2.07×10^(6)V/m,屏蔽罩端部及触头间隙处电场综合均匀度提高了1.4×10^(4)V/m。本文所提优化设计方法可合理改进灭弧室结构参数,达到有效调控灭弧室电场分布的效果。 展开更多
关键词 真空灭弧室 电场 正交实验 神经网络 结构优化
在线阅读 下载PDF
基于BP神经网络的弹射装置参数优化
14
作者 贺尔铭 赵冠臣 +1 位作者 王延生 韩召辉 《西北工业大学学报》 北大核心 2025年第4期631-639,共9页
为降低弹射装置的质量及体积占用并提升其缓冲性能,以某型弹射装置为研究对象,建立了弹射过程及缓冲过程的物理模型和数学模型,利用龙格库塔方法求解并进行仿真分析。利用拉丁超立方采样方法选取样本点,并在仿真程序中运行求解。随后基... 为降低弹射装置的质量及体积占用并提升其缓冲性能,以某型弹射装置为研究对象,建立了弹射过程及缓冲过程的物理模型和数学模型,利用龙格库塔方法求解并进行仿真分析。利用拉丁超立方采样方法选取样本点,并在仿真程序中运行求解。随后基于BP神经网络建立输入与输出之间的代理模型,并以此代理模型为基础,利用NSGA-Ⅱ多目标优化方法进行优化。经过优化,与初始方案对比,装置质量降低15.52%,缓冲末速度降低54.58%,最大缓冲加速度降低23.15%,优化效果显著。 展开更多
关键词 多目标优化 弹射装置 BP神经网络 NSGA-Ⅱ算法 液压传动
在线阅读 下载PDF
利用非支配排序遗传算法优化卷积神经网络研究节点地震仪RFID测距
15
作者 庞聪 林春晓 +3 位作者 李忠亚 江勇 陈国庆 宋莹莹 《大地测量与地球动力学》 北大核心 2025年第10期1079-1084,共6页
针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)... 针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)的2个优化目标函数,其自变量统一为学习率下降因子、初始学习率、批大小等一维卷积神经网络(1D-CNN)超参数,因变量分别为网络预测结果与理论值的决定系数(R^(2))和平均偏差误差(MBE);最后以最佳超参数值构成NSGAⅢ-1D-CNN新模型,以提高RFID测距模型的稳定性和精确度。实验结果表明,新模型在100轮循环实验下的节点地震仪RFID测距误差较小,在R^(2)、均方根误差(RMSE)、平均绝对误差(MAE)、MBE等多个指标上均表现优异,均值分别为0.9779、0.0586 m、0.0472 m、-0.0013 m,相对于其他模型具有更高的测距定位精度,在野外物探中具有一定应用价值。 展开更多
关键词 节点地震仪 RFID测距 一维卷积神经网络 超参数优化 非支配排序遗传算法 多目标优化
在线阅读 下载PDF
面向YOLO神经网络的数据流架构优化研究 被引量:2
16
作者 穆宇栋 李文明 +5 位作者 范志华 吴萌 吴海彬 安学军 叶笑春 范东睿 《计算机学报》 北大核心 2025年第1期82-99,共18页
YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行... YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行模式与神经网络算法匹配度高,更能充分挖掘其中的数据并行性。然而,在数据流架构上部署YOLO神经网络时面临三个问题:(1)数据流架构的数据流图映射并不能结合YOLO神经网络中卷积层卷积核较小的特点,造成卷积运算数据复用率过低的问题,并进一步降低计算部件利用率;(2)数据流架构在算子调度时无法利用算子间结构高度耦合的特点,导致大量数据重复读取;(3)数据流架构上的数据存取与执行高度耦合、串序执行,导致数据存取延迟过高。为解决这些问题,本文设计了面向YOLO神经网络的数据流加速器DFU-Y。首先,结合卷积嵌套循环的执行模式,本文分析了小卷积核卷积运算的数据复用特征,并提出了更有利于执行单元内部数据复用的数据流图映射算法,从而整体提升卷积运行效率;然后,为充分利用结构耦合的算子间的数据复用,DFU-Y提出数据流图层次上的算子融合调度机制以减少数据存取次数、提升神经网络运行效率;最后,DFU-Y通过双缓存解耦合数据存取与执行,从而并行执行数据存取与运算,掩盖了程序间的数据传输延迟,提高了计算部件利用率。实验表明,相较数据流架构(DFU)和GPU(NVIDIA Xavier NX),DFU-Y分别获得2.527倍、1.334倍的性能提升和2.658倍、3.464倍的能效提升;同时,相较YOLO专用加速器(Arria-YOLO),DFU-Y在保持较好通用性的同时,达到了其性能的72.97%、能效的87.41%。 展开更多
关键词 YOLO算法 数据流架构 数据流图优化 卷积神经网络 神经网络加速
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
17
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于神经网络的泥水盾构地表沉降预测与掘进参数优化 被引量:2
18
作者 任旭东 张凤凯 +2 位作者 丁万涛 刘宇婷 徐天婧 《科学技术与工程》 北大核心 2025年第5期2090-2099,共10页
为研究泥水盾构掘进参数对地表沉降的影响,依托哈尔滨地铁3号线工程河松—河山叠落区间左线泥水盾构掘进与监测数据,基于遗传算法优化的BP神经网络,针对不同沉降输出形式展开研究,引入隧道距离标签,优化了神经网络拟合效果,并根据此网... 为研究泥水盾构掘进参数对地表沉降的影响,依托哈尔滨地铁3号线工程河松—河山叠落区间左线泥水盾构掘进与监测数据,基于遗传算法优化的BP神经网络,针对不同沉降输出形式展开研究,引入隧道距离标签,优化了神经网络拟合效果,并根据此网络模型进行参数敏感性分析,得出3项最敏感参数,并进行穷举试验,进一步分析参数对地表沉降的具体影响效果。研究表明:泥水盾构掘进在穿过某一环2 d后,其地表沉降表现与掘进参数关联性不密切,地表沉降分析可以聚焦于当日监测值;盾构机穿过某一环前、中、后会对该环上方的地表沉降产生不同的影响,后续基于神经网络对地表沉降的研究可考虑纳入该项指标;泥水盾构掘进参数中,降低泥浆黏度和提高泥浆密度可控制地表下沉,提高推进速度可以降低施工对地表沉降的影响。 展开更多
关键词 神经网络 泥水盾构 地表沉降 敏感分析 参数优化
在线阅读 下载PDF
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法 被引量:1
19
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 lstm神经网络 深度学习
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
20
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 PSO-BP神经网络 遗传算法
在线阅读 下载PDF
上一页 1 2 228 下一页 到第
使用帮助 返回顶部