期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
粒子群优化随机森林机床热误差建模与补偿
1
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子群优化随机森林(APSO-RF)模型 浣熊优化算法(COA)
在线阅读 下载PDF
基于BO-RF回归预测的海水柱塞泵配流阀结构参数优化研究
2
作者 周广金 国凯 +1 位作者 孙杰 黄晓明 《机电工程》 北大核心 2025年第4期618-627,共10页
海水柱塞泵采用阀配流方式可以提高其密封性能,保证其具有较高的输出压力。针对配流阀结构参数设计不合理,导致阀芯运动滞后和容积效率降低的问题,提出了一种贝叶斯优化(BO)与随机森林算法(RF)相结合的海水柱塞泵配流阀结构参数优化方... 海水柱塞泵采用阀配流方式可以提高其密封性能,保证其具有较高的输出压力。针对配流阀结构参数设计不合理,导致阀芯运动滞后和容积效率降低的问题,提出了一种贝叶斯优化(BO)与随机森林算法(RF)相结合的海水柱塞泵配流阀结构参数优化方法。首先,利用AMESim软件搭建了海水泵液压系统仿真模型,利用试验验证了仿真模型的准确性,分别分析了吸、排液阀的弹簧刚度、弹簧预紧力、阀芯质量对阀芯滞后以及容积效率的影响;然后,基于仿真获得的配流阀结构参数与对应输出流量的数据,对比分析了贝叶斯优化随机森林(BO-RF)模型、粒子群优化随机森林(PSO-RF)模型、反向传播神经网络(BPNN)模型和随机森林(RF)模型的回归预测结果,以BO-RF模型为回归预测模型,利用遗传算法优化了配流阀结构参数,并获得了结构参数最优解;最后,对优化后的配流阀结构参数进行了仿真分析。研究结果表明:吸、排液阀的弹簧刚度、弹簧预紧力增大能够减小阀芯滞后,提高容积效率,参数增大到临界值后,容积效率会随参数增大而降低;吸、排液阀的阀芯质量增大会增大阀芯滞后,减小容积效率;BO-RF模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))均优于RF、PSO-RF和BPNN模型,其回归预测准确度更高;对于优化后的结果进行仿真可得:容积效率较原结构提高了4.7%。该模型适用于配流阀结构参数预测和优化问题,可为提高柱塞泵容积效率提供参考。 展开更多
关键词 三柱塞曲柄连杆式高压海水柱塞泵 容积效率降低 阀芯运动滞后 贝叶斯优化随机森林回归预测模型 粒子群优化随机森林 弹簧刚度和预紧力 阀芯质量
在线阅读 下载PDF
基于修正散点图矩阵与随机森林的岩爆等级预测 被引量:21
3
作者 刘剑 周宗红 《有色金属工程》 CAS 北大核心 2022年第3期120-128,共9页
为了提高岩爆预测模型的精度,以围岩洞壁最大切向应力(MTS)、岩石单轴抗压强度(UCS)、岩石单轴抗拉强度(UTS)、应力系数(SCF)、脆性系数(BI)、岩石弹性能指数(EEI)等参数作为预选预测指标。运用修正散点图矩阵分析指标间、指标与岩爆等... 为了提高岩爆预测模型的精度,以围岩洞壁最大切向应力(MTS)、岩石单轴抗压强度(UCS)、岩石单轴抗拉强度(UTS)、应力系数(SCF)、脆性系数(BI)、岩石弹性能指数(EEI)等参数作为预选预测指标。运用修正散点图矩阵分析指标间、指标与岩爆等级间的关系,筛选指标集中的离群值,确定构成岩爆预测的指标体系。引入并优化随机森林算法,采用Randomize Search CV和Grid Search CV方法寻求最优超参数,运用优化后模型对岩爆实例进行岩爆倾向性等级预测,并将预测结果与神经网络模型(ANN)、支持向量机模型(SVM)、XGBoost模型结果进行分析对比。研究表明:修正散点图矩阵对筛选多维岩爆数据离群值是有效的,优化后的Random Forest模型的预测准确率为92.6%,为岩爆倾向性分级提供一种新的方法。 展开更多
关键词 岩爆灾害等级预测 修正散点图矩阵 指标优选 优化随机森林模型
在线阅读 下载PDF
Enhancing rock fragmentation prediction in mining operations:A hybrid GWO-RF model with SHAP interpretability 被引量:3
4
作者 ZHANG Yu-lin QIU Yin-gui +2 位作者 ARMAGHANI Danial Jahed MONJEZI Masoud ZHOU Jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2916-2929,共14页
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy... In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry. 展开更多
关键词 BLASTING rock fragmentation random forest grey wolf optimization hybrid tree-based technique
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部