期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
微粒群算法优化化工建模训练集 被引量:6
1
作者 张运陶 高世博 《化工学报》 EI CAS CSCD 北大核心 2008年第4期964-969,共6页
提出两种均以微粒群(PSO)算法对原始训练集随机抽样优化,再结合机器学习算法建立预测模型的PSO算法优化化工建模训练集的思路。思路1首先以模型交叉验证的均方误差函数mse最小为目标优化训练集,再通过对验证集预测,从平行运行得到的多... 提出两种均以微粒群(PSO)算法对原始训练集随机抽样优化,再结合机器学习算法建立预测模型的PSO算法优化化工建模训练集的思路。思路1首先以模型交叉验证的均方误差函数mse最小为目标优化训练集,再通过对验证集预测,从平行运行得到的多个优化训练集中确定最优训练集用于建模。思路2借鉴提高BP神经网络泛化能力的初期终止(early stop)法,以对验证集预测的mse最小为目标优化训练集,再通过对测试集预测,从平行运行得到的多个优化训练集中确定最优训练集用于建模。通过仿真实验研究和对某炼油厂调和汽油生产数据的具体分析应用,表明本文思路可以较大幅度提高模型的预测准确性,在化工建模中具有推广应用价值。 展开更多
关键词 微粒群算法 优化训练集 仿真 化工建模
在线阅读 下载PDF
文本分类中训练集相关数量指标的影响研究 被引量:6
2
作者 李湘东 曹环 黄莉 《计算机应用研究》 CSCD 北大核心 2014年第11期3324-3327,3332,共5页
针对训练集对分类性能的影响,从训练集的文本数、类别数以及特征项数这三项数量指标出发进行研究。使用多因素方差分析方法及多种语料库定量探讨该三项数量指标对分类性能的影响规律。结果发现特征项数对分类性能的影响在不同的文本数... 针对训练集对分类性能的影响,从训练集的文本数、类别数以及特征项数这三项数量指标出发进行研究。使用多因素方差分析方法及多种语料库定量探讨该三项数量指标对分类性能的影响规律。结果发现特征项数对分类性能的影响在不同的文本数和类别数时是不同的,分类性能受训练集的这三项指标的交互影响,通过对训练集的这三项指标进行优化,提出了从分类算法、特征项选择法以外提高分类性能的途径。在真实数据上的实验结果表明,该方法可有效提高分类性能。 展开更多
关键词 训练优化 文本分类 多因素方差分析 语料库 相关数量指标
在线阅读 下载PDF
基于改进KNN回归算法的风电机组齿轮箱状态监测 被引量:17
3
作者 刘长良 张书瑶 王梓齐 《中国测试》 CAS 北大核心 2021年第1期153-159,共7页
针对风电机组齿轮箱的状态监测问题,提出使用改进KNN回归算法建立齿轮箱的正常行为模型。首先,对经典KNN回归算法的距离度量公式进行改进,实验证明预测精度提高约60%;其次,基于改进的离群点和相似点剪辑算法优化KNN回归算法的训练集以... 针对风电机组齿轮箱的状态监测问题,提出使用改进KNN回归算法建立齿轮箱的正常行为模型。首先,对经典KNN回归算法的距离度量公式进行改进,实验证明预测精度提高约60%;其次,基于改进的离群点和相似点剪辑算法优化KNN回归算法的训练集以提升运算效率,优化后计算时间缩短约20%,预测精度基本保持不变。最后,针对某风电场一台2 MW风电机组的齿轮箱实际故障数据,应用提出的改进KNN回归算法并结合统计过程控制相关理论,实现对齿轮箱故障的预警。结果表明:较经典KNN算法,提出的改进算法故障预警能力显著增强。 展开更多
关键词 风电机组齿轮箱 状态监测 KNN回归算法 训练优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部