期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
轴承故障的排列熵特征提取与GK模糊识别方法 被引量:5
1
作者 陆凤君 《组合机床与自动化加工技术》 北大核心 2020年第5期95-98,102,共5页
为了提高轴承故障诊断准确率,提出了参数优化多尺度排列熵的特征参数提取方法和加权GK模糊聚类的识别方法。在特征提取方面,以多尺度排列熵序列偏度最小为优化目标,使用多作用力微粒群算法优化多尺度排列熵参数,实现了排列熵特征参数在... 为了提高轴承故障诊断准确率,提出了参数优化多尺度排列熵的特征参数提取方法和加权GK模糊聚类的识别方法。在特征提取方面,以多尺度排列熵序列偏度最小为优化目标,使用多作用力微粒群算法优化多尺度排列熵参数,实现了排列熵特征参数在轴承不同故障状态下的完全分离;在故障识别方面,提出了加权GK模糊聚类的识别方法,使用ReliefF算法计算特征参数权重,为高敏感度特征参数赋予更大的权值,从而提高GK模糊聚类的聚集度。经轴承故障实验验证,文章提出的排列熵特征参数提取和GK模糊聚类识别方法在此次实验中能够精准识别轴承故障类型,说明文中提出的特征提取和模式识别方法具有一定借鉴意义。 展开更多
关键词 轴承故障诊断 参数优化多尺度排列熵 加权GK模糊聚类 多作用力微粒群算法
在线阅读 下载PDF
基于无限特征选择层次链接无限隐Markov模型的轴承故障诊断方法研究 被引量:1
2
作者 李舒扬 李志农 +2 位作者 周世健 毛清华 张旭辉 《兵器装备工程学报》 CAS CSCD 北大核心 2022年第9期217-225,共9页
针对无限隐Markov故障诊断模型在对旋转机械中多种故障训练时割裂了各个数据集之间联系,造成每种故障数据集单独训练的问题,提出了一种层次链接无限隐Markov故障诊断模型。将层次链接无限隐Markov故障模型与无限特征选取后优化多尺度排... 针对无限隐Markov故障诊断模型在对旋转机械中多种故障训练时割裂了各个数据集之间联系,造成每种故障数据集单独训练的问题,提出了一种层次链接无限隐Markov故障诊断模型。将层次链接无限隐Markov故障模型与无限特征选取后优化多尺度排列熵相结合,应用到滚动轴承故障诊断领域。无限特征算法能够高效地提取故障振动信号中包含的信息,进而完成对不同故障的分类。将获得的数据输入粒子群算法优化多尺度排列熵参数,并对其求得相应的多尺度排列熵值,经无限特征算法对得到的特征量进行排序,筛选出相比较下包含信息量大的特征量输入到层次链接无限隐Markov模型中训练与识别。在此基础上将结果与使用无限特征算法筛选无限隐Markov模型的训练识别结果、随机特征选择下的层次链接无限隐Markov模型结果作对比,实验研究表明:无限特征算法能有效提取更具价值的特征信息,层次链接无限隐Markov故障诊断模型能够更有效地识别,为滚动轴承的故障诊断提供了新的思路。 展开更多
关键词 层次链接无限隐Markov模型 无限特征 优化多尺度排列熵 轴承故障诊断 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部