Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling ...Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling field model incorporates carburizing field analysis,temperature field analysis,phase transformation kinetics analysis and a modified hardness calculation model.In determination of the calculation model for hardness,calculation equations are given to be applied to low carbon content(x(C)<0.5%) for the child phases and the martensite hardness is calculated for high carbon content(x(C)>0.5%) in alloy.Then,the complete carburizing-quenching hardness calculation model is built,and the hardness simulation data are corrected considering the influence of residual austenite(RA) on hardness.Hardness simulations of the carburizing and quenching process of 17CrNiMo6 samples have been performed using DEFORM-HT_V10.2 and MATLAB R2013 a.Finally,a series of comparisons of simulation results and measured values show a good agreement between them,which validates the accuracy of the proposed mathematical model.展开更多
Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting hea...Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.展开更多
Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots...Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain.展开更多
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Program of Hunan Province,China
文摘Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling field model incorporates carburizing field analysis,temperature field analysis,phase transformation kinetics analysis and a modified hardness calculation model.In determination of the calculation model for hardness,calculation equations are given to be applied to low carbon content(x(C)<0.5%) for the child phases and the martensite hardness is calculated for high carbon content(x(C)>0.5%) in alloy.Then,the complete carburizing-quenching hardness calculation model is built,and the hardness simulation data are corrected considering the influence of residual austenite(RA) on hardness.Hardness simulations of the carburizing and quenching process of 17CrNiMo6 samples have been performed using DEFORM-HT_V10.2 and MATLAB R2013 a.Finally,a series of comparisons of simulation results and measured values show a good agreement between them,which validates the accuracy of the proposed mathematical model.
基金Project(50875265) supported by the National Natural Science Foundation of ChinaProject(20080440992) supported by the Postdoctoral Science Foundation of ChinaProject(2009SK3159) supported by the Technology Support Plan of Hunan Province,China
文摘Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.
基金Project(60775060) supported by the National Natural Science Foundation of ChinaProject(F200801) supported by the Natural Science Foundation of Heilongjiang Province,China+1 种基金Project(200802171053,20102304110006) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2012RFXXG059) supported by Harbin Science and Technology Innovation Talents Special Fund,China
文摘Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain.