期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于优势演员-评论家算法的强化自动摘要模型 被引量:7
1
作者 杜嘻嘻 程华 房一泉 《计算机应用》 CSCD 北大核心 2021年第3期699-705,共7页
针对长文本自动摘要任务中抽取式模型摘要较为冗余,而生成式摘要模型时常有关键信息丢失、摘要不准确和生成内容重复等问题,提出一种面向长文本的基于优势演员-评论家算法的强化自动摘要模型(A2C-RLAS)。首先,用基于卷积神经网络(CNN)... 针对长文本自动摘要任务中抽取式模型摘要较为冗余,而生成式摘要模型时常有关键信息丢失、摘要不准确和生成内容重复等问题,提出一种面向长文本的基于优势演员-评论家算法的强化自动摘要模型(A2C-RLAS)。首先,用基于卷积神经网络(CNN)和循环神经网络(RNN)的混合神经网络的抽取器(extractor)来提取原文关键句;然后,用基于拷贝机制和注意力机制的重写器(rewriter)来精炼关键句;最后,使用强化学习的优势演员-评论家(A2C)算法训练整个网络,把重写摘要和参考摘要的语义相似性(BERTScore值)作为奖励(reward)来指导抽取过程,从而提高抽取器提取句子的质量。在CNN/Daily Mail数据集上的实验结果表明,与基于强化学习的抽取式摘要(Refresh)模型、基于循环神经网络的抽取式摘要序列模型(SummaRuNNer)和分布语义奖励(DSR)模型等模型相比,A2C-RLAS的最终摘要内容更加准确、语言更加流畅,冗余的内容有效减少,且A2C-RLAS的ROUGE和BERTScore指标均有提升。相较于Refresh模型和SummaRuNNer模型,A2C-RLAS模型的ROUGE-L值分别提高了6.3%和10.2%;相较于DSR模型,A2C-RLAS模型的F1值提高了30.5%。 展开更多
关键词 自动摘要模型 抽取式摘要模型 生成式摘要模型 编码器-解码器 强化学习 优势演员-评论家算法
在线阅读 下载PDF
基于优势演员-评论家算法的危险货物集装箱堆场安全堆存空间分配
2
作者 沈阳 黄诚 宓为建 《上海海事大学学报》 北大核心 2022年第3期13-20,61,共9页
针对危险货物集装箱(简称危货箱)堆场堆存空间分配的安全性问题,通过分析危货箱堆存的风险因素及安全堆存规范,提出一种以安全堆存空间利用率和安全指数最大为目标的危货箱堆场安全堆存空间分配多目标优化模型。设计优势演员-评论家(adv... 针对危险货物集装箱(简称危货箱)堆场堆存空间分配的安全性问题,通过分析危货箱堆存的风险因素及安全堆存规范,提出一种以安全堆存空间利用率和安全指数最大为目标的危货箱堆场安全堆存空间分配多目标优化模型。设计优势演员-评论家(advantage actor-critic,A2C)算法对模型进行求解,并通过算例分析和对比验证方法的有效性及优越性。结果表明,该方法能够获得在降低作业风险和提高事故应急处置能力条件下的危货箱堆场最优堆存空间分配策略,从而提高危货箱堆存安全性和堆场利用率。 展开更多
关键词 危险货物集装箱 安全堆存空间分配 多目标优化 优势演员-评论家算法
在线阅读 下载PDF
基于柔性演员-评论家算法的决策规划协同研究 被引量:3
3
作者 唐斌 刘光耀 +3 位作者 江浩斌 田宁 米伟 王春宏 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第2期105-113,187,共10页
为了解决基于常规深度强化学习(Deep Reinforcement Learning, DRL)的自动驾驶决策存在学习速度慢、安全性及合理性较差的问题,本文提出一种基于柔性演员-评论家(Soft Actor-Critic,SAC)算法的自动驾驶决策规划协同方法,并将SAC算法与... 为了解决基于常规深度强化学习(Deep Reinforcement Learning, DRL)的自动驾驶决策存在学习速度慢、安全性及合理性较差的问题,本文提出一种基于柔性演员-评论家(Soft Actor-Critic,SAC)算法的自动驾驶决策规划协同方法,并将SAC算法与基于规则的决策规划方法相结合设计自动驾驶决策规划协同智能体。结合自注意力机制(Self Attention Mechanism, SAM)和门控循环单元(Gate Recurrent Unit, GRU)构建预处理网络;根据规划模块的具体实现方式设计动作空间;运用信息反馈思想设计奖励函数,给智能体添加车辆行驶条件约束,并将轨迹信息传递给决策模块,实现决策规划的信息协同。在CARLA自动驾驶仿真平台中搭建交通场景对智能体进行训练,并在不同场景中将所提出的决策规划协同方法与常规的基于SAC算法的决策规划方法进行比较,结果表明,本文所设计的自动驾驶决策规划协同智能体学习速度提高了25.10%,由其决策结果生成的平均车速更高,车速变化率更小,更接近道路期望车速,路径长度与曲率变化率更小。 展开更多
关键词 智能交通 自动驾驶 柔性演员-评论家算法 决策规划协同 深度强化学习
在线阅读 下载PDF
基于异步优势演员-评论家学习的服务功能链资源分配算法 被引量:8
4
作者 唐伦 贺小雨 +3 位作者 王晓 谭颀 胡彦娟 陈前斌 《电子与信息学报》 EI CSCD 北大核心 2021年第6期1733-1741,共9页
考虑网络全局信息难以获悉的实际情况,针对接入网切片场景下用户终端(UE)的移动性和数据包到达的动态性导致的资源分配优化问题,该文提出了一种基于异步优势演员-评论家(A3C)学习的服务功能链(SFC)资源分配算法。首先,该算法建立基于区... 考虑网络全局信息难以获悉的实际情况,针对接入网切片场景下用户终端(UE)的移动性和数据包到达的动态性导致的资源分配优化问题,该文提出了一种基于异步优势演员-评论家(A3C)学习的服务功能链(SFC)资源分配算法。首先,该算法建立基于区块链的资源管理机制,通过区块链技术实现可信地共享并更新网络全局信息,监督并记录SFC资源分配过程。然后,建立UE移动和数据包到达时变情况下的无线资源、计算资源和带宽资源联合分配的时延最小化模型,并进一步将其转化为马尔科夫决策过程(MDP)。最后,在所建立的MDP中采用A3C学习方法,实现资源分配策略的求解。仿真结果表明,该算法能够更加合理高效地利用资源,优化系统时延并保证UE需求。 展开更多
关键词 网络切片 服务功能链资源分配 马尔科夫决策过程 异步优势演员-评论家学习 区块链
在线阅读 下载PDF
基于A3C的认知物联网通信干扰消除算法 被引量:1
5
作者 刘新梦 谢健骊 +1 位作者 李翠然 王亦鸣 《计算机工程》 CAS CSCD 北大核心 2024年第10期281-290,共10页
针对频谱资源干扰管理的智能化需求,提出一种基于异步优势行动者-评论家(A3C)的干扰消除算法,旨在应对认知物联网(CIoT)通信系统中由频谱资源共享引起的干扰问题。通过智能体的学习和优化,帮助次级用户(SU)在受到干扰影响时做出最优的决... 针对频谱资源干扰管理的智能化需求,提出一种基于异步优势行动者-评论家(A3C)的干扰消除算法,旨在应对认知物联网(CIoT)通信系统中由频谱资源共享引起的干扰问题。通过智能体的学习和优化,帮助次级用户(SU)在受到干扰影响时做出最优的决策,从而改善通信质量和系统性能。在该算法中,当SU遭受干扰影响通信质量时,智能体通过学习和优化,使SU能够根据当前的位置信息、发射功率、接收功率以及干扰程度选择最低干扰程度的行动,并执行该行动后获得的奖励。智能体通过尝试不同减少干扰的行动,并根据奖励的反馈调整策略,达到最大化定义干扰程度指标和信号质量指标的奖励函数的目的,从而最大程度地减少干扰对通信质量的影响。实验结果表明,与传统k-means算法以及深度递归Q网络(DRQN)和深度Q网络(DQN)优化算法相比,基于A3C的干扰消除算法具有更短的收敛时间、更高的执行效率以及更高的系统吞吐量,较3种基准方法在吞吐量性能上至少提高7%,能够有效地减少干扰对通信质量的不利影响。 展开更多
关键词 认知物联网 干扰消除 异步优势行动者-评论家算法 干扰程度 信号质量 吞吐量
在线阅读 下载PDF
基于多域联合的无人机集群认知抗干扰算法 被引量:11
6
作者 刘春玲 刘敏提 丁元明 《计算机工程》 CAS CSCD 北大核心 2020年第12期193-200,共8页
为解决无人机集群网络在复杂通信环境中对抗智能性干扰能力较弱的问题,基于智能决策理论,提出一种多域联合的认知抗干扰算法。该算法在优势演员-评论家算法的基础上,将无人机视作智能体,并由感知到的环境频谱状态决策出干扰信道。基于St... 为解决无人机集群网络在复杂通信环境中对抗智能性干扰能力较弱的问题,基于智能决策理论,提出一种多域联合的认知抗干扰算法。该算法在优势演员-评论家算法的基础上,将无人机视作智能体,并由感知到的环境频谱状态决策出干扰信道。基于Stackelberg博弈理论,利用功率域压制中度干扰等级的信道干扰信号,减少切换信道的时间开销。通过引入簇头协助的方法,解决由于单个智能体局部频谱感知能力较弱而导致信道决策成功率较低的问题。仿真结果表明,相比QL-AJ算法与AC-AJ算法,该算法能够给出簇内最佳节点个数,提高接收信号信干噪比,且网络整体抗干扰性能较好。 展开更多
关键词 认知抗干扰算法 优势演员-评论家算法 STACKELBERG博弈 无人机集群 分布式网络
在线阅读 下载PDF
移动边缘计算辅助智能驾驶中基于高效联邦学习的碰撞预警算法 被引量:2
7
作者 唐伦 文明艳 +1 位作者 单贞贞 陈前斌 《电子与信息学报》 EI CSCD 北大核心 2023年第7期2406-2414,共9页
智能驾驶中的碰撞避免任务存在对时延要求极高和隐私保护等挑战。首先,该文提出一种基于自适应调整参数的半异步联邦学习(SFLAAP)的门控循环单元联合支持向量机(GRU_SVM)碰撞多级预警算法,SFLAAP可根据训练和资源情况动态调整两个训练参... 智能驾驶中的碰撞避免任务存在对时延要求极高和隐私保护等挑战。首先,该文提出一种基于自适应调整参数的半异步联邦学习(SFLAAP)的门控循环单元联合支持向量机(GRU_SVM)碰撞多级预警算法,SFLAAP可根据训练和资源情况动态调整两个训练参数:本地训练次数和参与聚合的局部模型数量。然后,为解决资源受限的移动边缘计算(MEC)下碰撞预警模型协作训练的效率问题,根据上述参数与SFLAAP训练时延的关系,建立训练总时延最小化模型,并将其转化为马尔可夫决策过程(MDP)。最后,在所建立的MDP中采用异步优势演员-评论家(A3C)学习求解,自适应地确定最优训练参数,从而减少碰撞预警模型的训练完成时间。仿真结果表明,所提算法有效地降低训练总时延并保证预测精度。 展开更多
关键词 碰撞预警 联邦学习 移动边缘计算 异步优势演员-评论家算法
在线阅读 下载PDF
考虑进站策略的网联电动公交车节能驾驶优化研究
8
作者 南斯睿 于谦 +2 位作者 李铁柱 尚赞娣 陈海波 《交通运输系统工程与信息》 北大核心 2025年第2期82-94,共13页
针对公交车在进出站和信号交叉口高能耗的问题,本文提出一种考虑进站策略的节能驾驶优化方法。首先,基于利用城市交通能力仿真(Simulation of Urban Mobility, SUMO)平台搭建智能网联场景,构建能够反映能耗、行驶效率和安全性的强化学... 针对公交车在进出站和信号交叉口高能耗的问题,本文提出一种考虑进站策略的节能驾驶优化方法。首先,基于利用城市交通能力仿真(Simulation of Urban Mobility, SUMO)平台搭建智能网联场景,构建能够反映能耗、行驶效率和安全性的强化学习复合奖励函数;其次,将进站策略和预设交通规则作为约束集成于柔性演员-评论家(Soft Actor-Critic, SAC)深度强化学习框架中,优化车辆进出站及接近信号交叉口的轨迹;最后,以实际行驶、基于深度Q网络(Deep Q-Network, DQN)算法常规、基于SAC算法、基于规则约束和DQN算法(DQN-ruled)的优化方法作为基准方案,与本文提出的基于规则约束和SAC算法(SAC-ruled)的优化方法进行对比。结果表明:通过SAC-ruled算法优化后的驾驶轨迹在多种场景下均优于基准方案。在跟驰运动中,与基准方案相比,所设计的节能驾驶优化方法较基准方案的车辆能耗最高减少35.97%,行驶时间提升21.67%;在换道运动中,车辆能耗最多可降低41.40%,行驶时间提升16.94%。此外,通过敏感性分析验证,本文提出的基于SAC-ruled算法的节能驾驶优化方法在应对车流量波动方面表现出更强的适应性。本文建立的节能驾驶优化模型可集成节能辅助驾驶系统,鼓励驾驶员主动节能。 展开更多
关键词 智能交通 节能驾驶优化 深度强化学习 纯电动公交 柔性演员-评论家算法
在线阅读 下载PDF
融合强化学习的分阶段策略求解旅行背包问题
9
作者 章政 夏小云 +1 位作者 陈泽丰 向毅 《计算机工程与科学》 北大核心 2025年第1期140-149,共10页
旅行背包问题TTP是传统的旅行商问题和背包问题的结合,属于NP难问题。相较于独立的旅行商问题和背包问题,旅行背包问题更加符合现实情况,具有更高的研究价值。先前的TTP求解算法主要为启发式算法,性能有限,其他类型的算法则研究较少。... 旅行背包问题TTP是传统的旅行商问题和背包问题的结合,属于NP难问题。相较于独立的旅行商问题和背包问题,旅行背包问题更加符合现实情况,具有更高的研究价值。先前的TTP求解算法主要为启发式算法,性能有限,其他类型的算法则研究较少。为了提高TTP的求解性能,提出了融合强化学习的算法,采用分阶段策略。第1阶段根据物品的属性生成物品选择计划,第2阶段利用强化学习演员-评论家(Actor-Critic)算法求解旅行路径,第3阶段引入邻域搜索策略优化所得解。实验结果表明,所提算法在大部分算例上都取得了较好的结果,并且在部分算例上,解的质量超越了其他对比算法,表明了所提算法具有较优的性能。 展开更多
关键词 强化学习 旅行背包问题 演员-评论家算法 组合优化
在线阅读 下载PDF
基于最大熵深度强化学习的双足机器人步态控制方法 被引量:3
10
作者 李源潮 陶重犇 王琛 《计算机应用》 CSCD 北大核心 2024年第2期445-451,共7页
针对双足机器人连续直线行走的步态稳定控制问题,提出一种基于最大熵深度强化学习(DRL)的柔性演员-评论家(SAC)步态控制方法。首先,该方法无需事先建立准确的机器人动力学模型,所有参数均来自关节角而无需额外的传感器;其次,采用余弦相... 针对双足机器人连续直线行走的步态稳定控制问题,提出一种基于最大熵深度强化学习(DRL)的柔性演员-评论家(SAC)步态控制方法。首先,该方法无需事先建立准确的机器人动力学模型,所有参数均来自关节角而无需额外的传感器;其次,采用余弦相似度方法对经验样本分类,优化经验回放机制;最后,根据知识和经验设计奖励函数,使双足机器人在直线行走训练过程中不断进行姿态调整,确保直线行走的鲁棒性。在Roboschool仿真环境中与其他先进深度强化学习算法,如近端策略优化(PPO)方法和信赖域策略优化(TRPO)方法的实验对比结果表明,所提方法不仅实现了双足机器人快速稳定的直线行走,而且鲁棒性更好。 展开更多
关键词 双足机器人 步态控制 深度强化学习 最大熵 柔性演员-评论家算法
在线阅读 下载PDF
一种平衡探索和利用的优先经验回放方法 被引量:2
11
作者 张佳能 李辉 +1 位作者 吴昊霖 王壮 《计算机科学》 CSCD 北大核心 2022年第5期179-185,共7页
经验回放方法可以重用过去的经验来更新目标策略,提高样本的利用率,已经成为深度强化学习的一个重要组成部分。优先经验回放在经验回放的基础上进行选择性采样,期望更好地利用经验样本。但目前的优先经验回放方式会降低从经验缓冲池采... 经验回放方法可以重用过去的经验来更新目标策略,提高样本的利用率,已经成为深度强化学习的一个重要组成部分。优先经验回放在经验回放的基础上进行选择性采样,期望更好地利用经验样本。但目前的优先经验回放方式会降低从经验缓冲池采样的样本的多样性,使神经网络收敛于局部最优。针对上述问题,提出了一种平衡探索和利用的优先经验回放方法(Exploration and Exploitation Balanced Experience Replay,E3R)。该方法可以综合考虑样本的探索效用和利用效用,根据当前状态和过去状态的相似性程度以及同一状态下行为策略和目标策略采取动作的相似性程度来对样本进行采样。此外,将E3R分别与策略梯度类算法软演员-评论家算法、值函数类算法深度Q网络算法相结合,并在相应的OpenAI gym环境下进行实验。实验结果表明,相比传统随机采样和时序差分优先采样,E3R可以获得更快的收敛速度和更高的累计回报。 展开更多
关键词 强化学习 经验回放 优先采样 利用 探索 演员-评论家算法
在线阅读 下载PDF
基于自适应多目标强化学习的服务集成方法
12
作者 郭潇 李春山 +1 位作者 张宇跃 初佃辉 《计算机应用》 CSCD 北大核心 2022年第11期3500-3505,共6页
当前服务互联网(IoS)中的服务资源呈现精细化、专业化的趋势,功能单一的服务无法满足用户复杂多变的需求,服务集成调度方法已经成为服务计算领域的热点。现有的服务集成调度方法大都只考虑用户需求的满足,未考虑IoS生态系统的可持续性... 当前服务互联网(IoS)中的服务资源呈现精细化、专业化的趋势,功能单一的服务无法满足用户复杂多变的需求,服务集成调度方法已经成为服务计算领域的热点。现有的服务集成调度方法大都只考虑用户需求的满足,未考虑IoS生态系统的可持续性。针对上述问题,提出一种基于自适应多目标强化学习的服务集成方法,该方法在异步优势演员评论家(A3C)算法的框架下引入多目标优化策略,从而在满足用户需求的同时保证IoS生态系统的健康发展。所提方法可以根据遗憾值对多目标值集成权重进行动态调整,改善多目标强化学习中子目标值不平衡的现象。在真实大规模服务环境下进行了服务集成验证,实验结果表明所提方法相对于传统机器学习方法在大规模服务环境下求解速度更快;相较于权重固定的强化学习(RL),各目标的求解质量更均衡。 展开更多
关键词 服务集成 强化学习 异步优势演员评论家算法 多目标优化 自适应权重
在线阅读 下载PDF
基于A3C的特征重构工艺路线规划方法 被引量:1
13
作者 陶鑫钰 王艳 纪志成 《现代制造工程》 CSCD 北大核心 2023年第10期15-26,共12页
针对柔性加工系统中零件发生特征重构的工艺路线规划问题,结合异步优势演员-评论家(A3C)算法的并行、异步、响应速度快以及决策经验可复用性、可扩展性的特点,提出了基于A3C算法的特征重构工艺路线规划方法。在零件发生特征重构的背景下... 针对柔性加工系统中零件发生特征重构的工艺路线规划问题,结合异步优势演员-评论家(A3C)算法的并行、异步、响应速度快以及决策经验可复用性、可扩展性的特点,提出了基于A3C算法的特征重构工艺路线规划方法。在零件发生特征重构的背景下,基于马尔可夫决策过程定义了状态、动作空间和奖励函数。针对A3C智能体在选取机床、刀具和进刀方向时可能会陷入局部最优,提出了随机贪婪策略,以扩大解的空间、提高解的质量,且为了避免A3C智能体在零件发生特征重构时陷入大量的试错中,提出了快失败策略,以加快智能体规避特征约束的能力,提高响应速度。仿真实验证明,所提方法能有效解决零件发生特征重构的工艺路线规划问题,且相比基于遗传、蚁群和模拟退火算法的工艺路线规划方法,所提方法在零件发生特征重构时响应速度更快,解的质量更高。 展开更多
关键词 异步优势演员-评论家 特征重构 工艺路线 深度强化学习 马尔可夫决策过程
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部