The effect of two alkylpyridinium ionic liquids (py-iLs) including N-butylpyridinium hydrogen sulfate (BpyHSO4) and N-hexylpyridinium hydrogen sulfate (HpyHSO4) on the kinetics of copper electrodeposition from a...The effect of two alkylpyridinium ionic liquids (py-iLs) including N-butylpyridinium hydrogen sulfate (BpyHSO4) and N-hexylpyridinium hydrogen sulfate (HpyHSO4) on the kinetics of copper electrodeposition from acidic sulfate solution was investigated by cyclic voltammetry and potentiodynamic polarization measurements. Results from cyclic voltammetry indicate that these py-iLs have a pronounced inhibiting effect on CuE+ electroreduction and there exists a typical nucleation and growth process. Kinetic parameters such as Tafel slope, transfer coefficient and exchange current density obtained from Tafel plots, lead to the conclusion that py-iLs inhibit the charge transfer by slightly changing the copper electrodeposition mechanism through their adsorption on the cathodic surface. In addition, scanning electron microscope (SEM) and X-ray diffraction analyses reveal that the presence of these additives leads to more leveled and fine-grained cathodic deposits without changing the crystal structure of the electrodeposited copper but strongly affects the crystallographic orientation by significantly inhibiting the growth of (111), (200) and (311) planes.展开更多
An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process...An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process was investigated using cyclic voltammetry, linear scanning voltammetry, environmental scanning electron microscopy and X-ray diffraction analysis. The results show that Pb F2 and PbSO4 are formed near the potential of Pb/PbSO4 couple. The pre-treatment in fluoride-containing H2SO4 solution contributes to the formation of a thick, compact and adherent passive film. Furthermore, pre-treatment in fluoride-containing H2SO4 solution also facilitates the formation of PbO2 on the anodic layer, and the reason could be attributed to the formation of more PbF2 and PbSO4 during the pre-treatment which tend to transform to PbO2 during the following electrowinning process. In addition, the anodic layer on anode with pre-treatment in fluoride-containing H2SO4 solution is thick and compact, and its predominant composition is β-PbO2. In summary, the pre-treatment in fluoride-containing H2SO4 solution benefits the formation of a desirable protective layer in a short time.展开更多
基金Projects(51204080, 51274108) supported by the National Natural Science Foundation of ChinaProject(2011FA009) supported by the Natural Science Foundation of Yunnan Province, ChinaProject(2011FZ020) supported by the Application Research Foundation of Yunnan Province, China
文摘The effect of two alkylpyridinium ionic liquids (py-iLs) including N-butylpyridinium hydrogen sulfate (BpyHSO4) and N-hexylpyridinium hydrogen sulfate (HpyHSO4) on the kinetics of copper electrodeposition from acidic sulfate solution was investigated by cyclic voltammetry and potentiodynamic polarization measurements. Results from cyclic voltammetry indicate that these py-iLs have a pronounced inhibiting effect on CuE+ electroreduction and there exists a typical nucleation and growth process. Kinetic parameters such as Tafel slope, transfer coefficient and exchange current density obtained from Tafel plots, lead to the conclusion that py-iLs inhibit the charge transfer by slightly changing the copper electrodeposition mechanism through their adsorption on the cathodic surface. In addition, scanning electron microscope (SEM) and X-ray diffraction analyses reveal that the presence of these additives leads to more leveled and fine-grained cathodic deposits without changing the crystal structure of the electrodeposited copper but strongly affects the crystallographic orientation by significantly inhibiting the growth of (111), (200) and (311) planes.
基金Projects(51204208,51374240)supported by the National Natural Science Foundation of ChinaProject(2014zzts028)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process was investigated using cyclic voltammetry, linear scanning voltammetry, environmental scanning electron microscopy and X-ray diffraction analysis. The results show that Pb F2 and PbSO4 are formed near the potential of Pb/PbSO4 couple. The pre-treatment in fluoride-containing H2SO4 solution contributes to the formation of a thick, compact and adherent passive film. Furthermore, pre-treatment in fluoride-containing H2SO4 solution also facilitates the formation of PbO2 on the anodic layer, and the reason could be attributed to the formation of more PbF2 and PbSO4 during the pre-treatment which tend to transform to PbO2 during the following electrowinning process. In addition, the anodic layer on anode with pre-treatment in fluoride-containing H2SO4 solution is thick and compact, and its predominant composition is β-PbO2. In summary, the pre-treatment in fluoride-containing H2SO4 solution benefits the formation of a desirable protective layer in a short time.