针对一类部分未知仿射非线性系统无穷区间求解问题,利用在线采样数据,提出了在线无偏最小二乘支持向量机(Least square support vector machines,LS-SVM)的方法.首先,通过引入一个参数消除了LS-SVM的偏置项,避免了冗余计算,同时在优化...针对一类部分未知仿射非线性系统无穷区间求解问题,利用在线采样数据,提出了在线无偏最小二乘支持向量机(Least square support vector machines,LS-SVM)的方法.首先,通过引入一个参数消除了LS-SVM的偏置项,避免了冗余计算,同时在优化目标中引入权值函数,对靠近当前时刻的数据样本点赋予更高权重,提高了计算精度;其次,采用滚动时间窗的方法,实现非线性系统无穷区间求解,并满足求解实时性要求;最后,通过数值算例仿真验证了本文方法的有效性和优越性.展开更多
针对仿射非线性系统的最优跟随控制问题,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的数据驱动方法.通过非线性系统已知信息和期望轨迹的离散数据构建LS-SVM模型,获得最优跟随轨线的近似解并求得...针对仿射非线性系统的最优跟随控制问题,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的数据驱动方法.通过非线性系统已知信息和期望轨迹的离散数据构建LS-SVM模型,获得最优跟随轨线的近似解并求得最优跟随控制器,使系统达到期望的动态性能.数值算例仿真证实,该方法具有优化和学习能力,能够实现在较小误差范围内对期望轨迹的准确跟踪.展开更多
基金supported by the National Natural Science Foundation of China under Grant 60274009Specialized Research Fund for the Doctoral Program of Higher Education under Grant20020145007
文摘针对一类部分未知仿射非线性系统无穷区间求解问题,利用在线采样数据,提出了在线无偏最小二乘支持向量机(Least square support vector machines,LS-SVM)的方法.首先,通过引入一个参数消除了LS-SVM的偏置项,避免了冗余计算,同时在优化目标中引入权值函数,对靠近当前时刻的数据样本点赋予更高权重,提高了计算精度;其次,采用滚动时间窗的方法,实现非线性系统无穷区间求解,并满足求解实时性要求;最后,通过数值算例仿真验证了本文方法的有效性和优越性.
文摘针对仿射非线性系统的最优跟随控制问题,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的数据驱动方法.通过非线性系统已知信息和期望轨迹的离散数据构建LS-SVM模型,获得最优跟随轨线的近似解并求得最优跟随控制器,使系统达到期望的动态性能.数值算例仿真证实,该方法具有优化和学习能力,能够实现在较小误差范围内对期望轨迹的准确跟踪.