期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于大语言模型的多智能体协作代码评审人推荐 被引量:2
1
作者 王路桥 周洋涛 +5 位作者 李青山 王铭康 徐子轩 崔笛 王璐 罗懿行 《软件学报》 北大核心 2025年第6期2558-2575,共18页
基于拉取请求(pull request,PR)的软件开发机制是开源软件中的重要实践.合适的代码评审人能够通过代码审查帮助贡献者及时发现PR中的潜在错误,为持续开发和集成过程提供质量保障.然而,代码变更内容的复杂性以及评审行为固有的多样性增... 基于拉取请求(pull request,PR)的软件开发机制是开源软件中的重要实践.合适的代码评审人能够通过代码审查帮助贡献者及时发现PR中的潜在错误,为持续开发和集成过程提供质量保障.然而,代码变更内容的复杂性以及评审行为固有的多样性增加了评审人推荐的难度.现有方法主要聚焦于从PR中挖掘变更代码的语义信息,或基于审查历史构建评审人画像,并通过多种静态策略组合进行推荐.这些研究受限于模型训练语料的丰富性以及交互类型的复杂性,导致推荐性能不佳.鉴于此,提出一种基于智能体间相互协作的代码评审人推荐方法.该方法利用先进的大语言模型,精确捕捉PR和评审人丰富的文本语义信息.此外,AI智能体强大的规划、协作和决策能力使其能够集成不同交互类型的信息,具有高度的灵活性和适应性.基于真实数据集进行实验分析,与基线评审人推荐方法相比,所提方法性能提升4.45%–26.04%.此外,案例研究证明,所提方法在可解释性方面表现突出,进一步验证了其在实际应用中的有效性和可靠性. 展开更多
关键词 代码评审人推荐 基于智能体的软件工程 大型语言模型 代码审查
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部