期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
托忒蒙文与维、哈、柯、汉、英文字混合兼容处理研究 被引量:1
1
作者 吴宗尧 《中文信息学报》 CSCD 1989年第2期27-34,共8页
本文研究在IBM PC/XT及其兼容机上对左、右、竖三个方向上书写的六种文字进行处理的一般原理和方法;研究在选定的M-24微机操作系统的中断处理级和系统功能调用两级上实现左、右、竖三种屏幕编辑方式;找出屏幕映射、主/辅字符处理规则、... 本文研究在IBM PC/XT及其兼容机上对左、右、竖三个方向上书写的六种文字进行处理的一般原理和方法;研究在选定的M-24微机操作系统的中断处理级和系统功能调用两级上实现左、右、竖三种屏幕编辑方式;找出屏幕映射、主/辅字符处理规则、键盘输入和屏幕转换方法;解决这些文字在不同方向上混合兼容处理、不等宽字符处理、字符编码等问题并在汉字操作系统CC-DOS 上实现。 展开更多
关键词 字符编码 微机操作 编码字符集 中断处理 辅助集 代码区 处理规则 键盘输入 信息处理技术 显示输出
在线阅读 下载PDF
Rev Rec: A two-layer reviewer recommendation algorithm in pull-based development model 被引量:5
2
作者 杨程 张迅晖 +5 位作者 曾令斌 范强 王涛 余跃 尹刚 王怀民 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1129-1143,共15页
Code review is an important process to reduce code defects and improve software quality. In social coding communities like GitHub, as everyone can submit Pull-Requests, code review plays a more important role than eve... Code review is an important process to reduce code defects and improve software quality. In social coding communities like GitHub, as everyone can submit Pull-Requests, code review plays a more important role than ever before, and the process is quite time-consuming. Therefore, finding and recommending proper reviewers for the emerging Pull-Requests becomes a vital task. However, most of the current studies mainly focus on recommending reviewers by checking whether they will participate or not without differentiating the participation types. In this paper, we develop a two-layer reviewer recommendation model to recommend reviewers for Pull-Requests (PRs) in GitHub projects from the technical and managerial perspectives. For the first layer, we recommend suitable developers to review the target PRs based on a hybrid recommendation method. For the second layer, after getting the recommendation results from the first layer, we specify whether the target developer will technically or managerially participate in the reviewing process. We conducted experiments on two popular projects in GitHub, and tested the approach using PRs created between February 2016 and February 2017. The results show that the first layer of our recommendation model performs better than the previous work, and the second layer can effectively differentiate the types of participation. 展开更多
关键词 Pull-Request code reviewer recommendation GitHub open source community
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部