期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
自适应模型选用辅助的多种群进化算法
1
作者 张国晨 崔钧皓 +2 位作者 王浩 孙超利 李春鹏 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1083-1088,共6页
代理模型辅助的进化算法是求解目标函数评价昂贵优化问题的有效方法.在这类算法中,算法的搜索策略和填充采样策略是在有限评价次数下获得优化问题较好解的重要因素.为此,本文使用多种群搜索策略用于平衡种群搜索的多样性和收敛性,同时... 代理模型辅助的进化算法是求解目标函数评价昂贵优化问题的有效方法.在这类算法中,算法的搜索策略和填充采样策略是在有限评价次数下获得优化问题较好解的重要因素.为此,本文使用多种群搜索策略用于平衡种群搜索的多样性和收敛性,同时基于个体和训练样本之间目标函数值的距离自适应选择模型进行个体的目标函数值估计,以提高估值的准确度.为了验证算法的有效性,在CEC2005测试函数以及扩频雷达Polly编码优化设计问题上进行测试,并和现有求解昂贵优化问题的算法进行了结果对比.实验结果表明本文提出的算法在目标函数评价次数有限的情况下能够获得昂贵优化问题的较好解. 展开更多
关键词 代理模型辅助的进化算法 昂贵优化问题 模型自适应选用策略 多种群搜索策略
在线阅读 下载PDF
代理模型辅助进化算法在高维优化问题中的应用 被引量:6
2
作者 田杰 谭瑛 +1 位作者 孙超利 曾建潮 《机械设计与制造》 北大核心 2018年第12期269-272,共4页
目前,代理模型辅助的进化算法是提高复杂优化问题的计算效率的一种有效手段。其中,模型管理在代理辅助进化优化中起着至关重要的作用。提出了一种基于多目标加点规则的高斯过程模型辅助社会微粒群算法(Multi-objective infill criterion... 目前,代理模型辅助的进化算法是提高复杂优化问题的计算效率的一种有效手段。其中,模型管理在代理辅助进化优化中起着至关重要的作用。提出了一种基于多目标加点规则的高斯过程模型辅助社会微粒群算法(Multi-objective infill criterion based Gaussian Process model assisted Social learning particle swarm optimization,MICGP-SLPSO)。将多目标的方法引入模型管理中,提出多目标加点规则,进而发展了一种新的基于代理模型的微粒群算法优化策略。选用高斯过程构造代理模型,采用微粒群算法对所构造的代理模型进行优化,根据已知信息,将期望改进准则(EI)及统计下限最小值准则LCB作为两个目标,用来确定哪些候选解进行实际计算。将本优化策略用于基准函数测试问题和阶梯悬臂梁设计优化实例,并与国内外现有研究成果进行比较,证明了MICGP-SLPSO在有限的适应值计算次数下拥有更好的寻优性能,尤其是在高维优化问题上拥有更显著的优势。 展开更多
关键词 高维费时问题 代理模型辅助的进化算法 加点规则
在线阅读 下载PDF
一种基于历史模型集成辅助的差分进化算法 被引量:1
3
作者 谭瑛 曹修 +1 位作者 王浩 李晓波 《小型微型计算机系统》 CSCD 北大核心 2022年第6期1315-1321,共7页
当前,基于代理模型辅助的进化算法广泛用于解决昂贵优化问题.其中,由于集成模型策略可以有效的集合多种模型的特点从而提高模型预测的准确度,所以被广泛应用.但是建立多个模型会增加优化过程的计算成本,因此本文提出一种基于历史模型集... 当前,基于代理模型辅助的进化算法广泛用于解决昂贵优化问题.其中,由于集成模型策略可以有效的集合多种模型的特点从而提高模型预测的准确度,所以被广泛应用.但是建立多个模型会增加优化过程的计算成本,因此本文提出一种基于历史模型集成辅助的差分进化算法.本文工作分为两部分:首先,提出由一部分历史模型和当前模型构成集成模型,该策略可以有效的降低计算成本.其次,提出一种新的基于决策空间欧式距离的不确定度评价标准,用于选择个体进行真实计算.为了验证本文提出算法的有效性,将本文方法与相关算法在CEC2005测试函数上测试,并且进行比较.实验结果证明本文提出的算法可以更有效的解决昂贵优化问题. 展开更多
关键词 昂贵优化问题 代理模型辅助的进化算法 集成历史模型 不确定度
在线阅读 下载PDF
基于主成分分析和代理模型辅助的多目标生产优化方法 被引量:5
4
作者 姚为英 冯高城 +3 位作者 任宜伟 尹彦君 王中正 李振宇 《科学技术与工程》 北大核心 2022年第23期10042-10049,共8页
多目标优化方法常用于考虑地质不确定性时进行油藏鲁棒生产优化,该方法能够同时优化历史拟合得到的多个概率模型的平均经济净现值和经济净现值的离散程度,从而得到一组权衡多个目标的最优生产方案。然而,多目标优化过程涉及的决策变量... 多目标优化方法常用于考虑地质不确定性时进行油藏鲁棒生产优化,该方法能够同时优化历史拟合得到的多个概率模型的平均经济净现值和经济净现值的离散程度,从而得到一组权衡多个目标的最优生产方案。然而,多目标优化过程涉及的决策变量规模大,且基于常规数值模拟的目标函数评估计算耗时长。对此,提出了一种基于主成分分析和代理模型辅助的多目标生产优化方法(K-MOEA/D-PCA),采用主成分分析对大规模决策变量进行降维,然后借助基于代理模型辅助的多目标进化算法,通过设计计算高效的近似函数来代替常规数值模拟进行生产优化,最终得到目标油藏的最优生产方案。为验证提出方法的有效性,将其应用到标准测试模型。结果表明,提出的K-MOEA/D-PCA方法,通过降低变量的维数,可以有效解决具有大规模变量的油藏多目标生产优化难题,实现优化效率和方案精度的平衡。 展开更多
关键词 多目标优化 鲁棒生产优化 主成分分析 代理辅助的进化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部