期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于行列式点过程的代理模型辅助多目标进化算法
1
作者 吴子聪 李金龙 《计算机应用研究》 北大核心 2025年第9期2607-2613,共7页
为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种... 为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种基于行列式点过程的模型管理方法,从非支配解集基于行列式点过程选取子集并用真实目标函数评估,再从所有经真实目标函数评估的解中选取子集用于更新代理模型。另一方面,提出一种基于自适应行列式点过程的环境选择方法,在进化过程的早期侧重于提高种群的收敛性,在进化过程的后期侧重于提高种群的多样性。最后,基于DTLZ、WFG、MAF测试问题验证算法的有效性。将所提算法与K-RVEA、KTA2、CSEA等常用算法进行比较,使用IGD+指标进行评估。实验结果显示所提出的算法能得到更优的解集,从而证明了其高计算代价多目标优化问题上的有效性。 展开更多
关键词 代理辅助多目标优化 进化算法 模型管理 环境选择 行列式点过程 收敛性 多样性
在线阅读 下载PDF
基于Kriging模型的改进型NSGA-Ⅲ解决昂贵优化问题 被引量:1
2
作者 耿焕同 宋飞飞 +1 位作者 周征礼 徐小涵 《计算机科学》 CSCD 北大核心 2023年第7期194-206,共13页
在许多实际的优化问题中,为了进行适应度评估,其物理实验或数值仿真代价高昂,这给大多数现有的多目标进化算法(EAs)带来了巨大挑战。因此,文中提出了一种基于克里金模型辅助的改进参考点引导进化的优化算法,用于解决昂贵的超多目标优化... 在许多实际的优化问题中,为了进行适应度评估,其物理实验或数值仿真代价高昂,这给大多数现有的多目标进化算法(EAs)带来了巨大挑战。因此,文中提出了一种基于克里金模型辅助的改进参考点引导进化的优化算法,用于解决昂贵的超多目标优化问题。具体而言,根据种群的空间分布特征,借助关联点的熵差信息筛选参考点引导进化,以达到探索与开发的平衡。所提出的代理辅助进化算法(SAEA)使用克里金法来逼近每个目标函数,而无需进行原始昂贵的函数评估从而降低了计算成本。模型管理中采用一种纯指标填充采样准则,借助收敛性、多样性指标确定适当采样策略并使用昂贵目标函数对采样解进行真实评估以提升种群收敛与算法优化的效率。对具有3个以上目标的80个DTLZ与WFG基准测试问题进行了对比研究,证明了此算法的有效性和可行性。 展开更多
关键词 昂贵耗时问题 进化算法 代理辅助多目标优化 KRIGING模型 模型管理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部