为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种...为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种基于行列式点过程的模型管理方法,从非支配解集基于行列式点过程选取子集并用真实目标函数评估,再从所有经真实目标函数评估的解中选取子集用于更新代理模型。另一方面,提出一种基于自适应行列式点过程的环境选择方法,在进化过程的早期侧重于提高种群的收敛性,在进化过程的后期侧重于提高种群的多样性。最后,基于DTLZ、WFG、MAF测试问题验证算法的有效性。将所提算法与K-RVEA、KTA2、CSEA等常用算法进行比较,使用IGD+指标进行评估。实验结果显示所提出的算法能得到更优的解集,从而证明了其高计算代价多目标优化问题上的有效性。展开更多
目前,代理模型辅助的进化算法是提高复杂优化问题的计算效率的一种有效手段。其中,模型管理在代理辅助进化优化中起着至关重要的作用。提出了一种基于多目标加点规则的高斯过程模型辅助社会微粒群算法(Multi-objective infill criterion...目前,代理模型辅助的进化算法是提高复杂优化问题的计算效率的一种有效手段。其中,模型管理在代理辅助进化优化中起着至关重要的作用。提出了一种基于多目标加点规则的高斯过程模型辅助社会微粒群算法(Multi-objective infill criterion based Gaussian Process model assisted Social learning particle swarm optimization,MICGP-SLPSO)。将多目标的方法引入模型管理中,提出多目标加点规则,进而发展了一种新的基于代理模型的微粒群算法优化策略。选用高斯过程构造代理模型,采用微粒群算法对所构造的代理模型进行优化,根据已知信息,将期望改进准则(EI)及统计下限最小值准则LCB作为两个目标,用来确定哪些候选解进行实际计算。将本优化策略用于基准函数测试问题和阶梯悬臂梁设计优化实例,并与国内外现有研究成果进行比较,证明了MICGP-SLPSO在有限的适应值计算次数下拥有更好的寻优性能,尤其是在高维优化问题上拥有更显著的优势。展开更多
分布式可再生能源的大规模接入,加剧了有源配电网(Active Distribution Network,ADN)的三相不平衡,容易导致系统电压越限与线损增加。然而,由于当前配电网量测设备安装不全,部分节点负荷数据难以准确获取,因此传统基于全局观测的ADN电...分布式可再生能源的大规模接入,加剧了有源配电网(Active Distribution Network,ADN)的三相不平衡,容易导致系统电压越限与线损增加。然而,由于当前配电网量测设备安装不全,部分节点负荷数据难以准确获取,因此传统基于全局观测的ADN电压控制方法难以满足实际控制需求。为解决上述问题,提出一种含深度学习代理模型的电压无功控制(Volt/Var control,VVC)进化算法。设计以高速公路神经网络为代理模型,精确拟合局部量测负荷信息、调压控制策略与系统性能指标之间的映射关系。将训练后的代理模型嵌入非支配排序遗传算法的迭代寻优过程中,对电压偏移率、三相不平衡度及线路损耗指标进行直接计算,实现数据驱动的配电网VVC策略快速求取。在改进的IEEE 123节点三相配电网算例上进行测试,验证了所提算法的性能优势及求解效率。展开更多
文摘为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种基于行列式点过程的模型管理方法,从非支配解集基于行列式点过程选取子集并用真实目标函数评估,再从所有经真实目标函数评估的解中选取子集用于更新代理模型。另一方面,提出一种基于自适应行列式点过程的环境选择方法,在进化过程的早期侧重于提高种群的收敛性,在进化过程的后期侧重于提高种群的多样性。最后,基于DTLZ、WFG、MAF测试问题验证算法的有效性。将所提算法与K-RVEA、KTA2、CSEA等常用算法进行比较,使用IGD+指标进行评估。实验结果显示所提出的算法能得到更优的解集,从而证明了其高计算代价多目标优化问题上的有效性。
文摘目前,代理模型辅助的进化算法是提高复杂优化问题的计算效率的一种有效手段。其中,模型管理在代理辅助进化优化中起着至关重要的作用。提出了一种基于多目标加点规则的高斯过程模型辅助社会微粒群算法(Multi-objective infill criterion based Gaussian Process model assisted Social learning particle swarm optimization,MICGP-SLPSO)。将多目标的方法引入模型管理中,提出多目标加点规则,进而发展了一种新的基于代理模型的微粒群算法优化策略。选用高斯过程构造代理模型,采用微粒群算法对所构造的代理模型进行优化,根据已知信息,将期望改进准则(EI)及统计下限最小值准则LCB作为两个目标,用来确定哪些候选解进行实际计算。将本优化策略用于基准函数测试问题和阶梯悬臂梁设计优化实例,并与国内外现有研究成果进行比较,证明了MICGP-SLPSO在有限的适应值计算次数下拥有更好的寻优性能,尤其是在高维优化问题上拥有更显著的优势。
文摘分布式可再生能源的大规模接入,加剧了有源配电网(Active Distribution Network,ADN)的三相不平衡,容易导致系统电压越限与线损增加。然而,由于当前配电网量测设备安装不全,部分节点负荷数据难以准确获取,因此传统基于全局观测的ADN电压控制方法难以满足实际控制需求。为解决上述问题,提出一种含深度学习代理模型的电压无功控制(Volt/Var control,VVC)进化算法。设计以高速公路神经网络为代理模型,精确拟合局部量测负荷信息、调压控制策略与系统性能指标之间的映射关系。将训练后的代理模型嵌入非支配排序遗传算法的迭代寻优过程中,对电压偏移率、三相不平衡度及线路损耗指标进行直接计算,实现数据驱动的配电网VVC策略快速求取。在改进的IEEE 123节点三相配电网算例上进行测试,验证了所提算法的性能优势及求解效率。