In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and positio...In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and position agents accurately and complete the system integration by the keyword matching method,due to the lack of clear semantic information of the classical agent model.An semantic-based agent dynamic positioning mechanism was proposed to assist in the system dynamic integration.According to the semantic agent model and the description method,a two-stage process including the domain positioning stage and the service semantic matching positioning stage,was discussed.With this mechanism,proper agents that provide appropriate service to assign sub-tasks for task completion can be found quickly and accurately.Finally,the effectiveness of the positioning mechanism was validated through the in-depth performance analysis in the application of simulation experiments to the system dynamic integration.展开更多
The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precisio...The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.展开更多
基金Projects(61173026,61373045,61202039)supported by the National Natural Science Foundation of ChinaProject(2012AA02A603)supported by the National High Technology Research and Development Program of China+1 种基金Projects(K5051223008,K5051223002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(513***103E)supported by the Pre-Research Project of the"Twelfth Five-Year-Plan"of China
文摘In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and position agents accurately and complete the system integration by the keyword matching method,due to the lack of clear semantic information of the classical agent model.An semantic-based agent dynamic positioning mechanism was proposed to assist in the system dynamic integration.According to the semantic agent model and the description method,a two-stage process including the domain positioning stage and the service semantic matching positioning stage,was discussed.With this mechanism,proper agents that provide appropriate service to assign sub-tasks for task completion can be found quickly and accurately.Finally,the effectiveness of the positioning mechanism was validated through the in-depth performance analysis in the application of simulation experiments to the system dynamic integration.
基金Supported by the National Key Research and Development Program of China(2022YFB3904803)。
文摘The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.