In this paper,the problem of brake orbits with minimal period estimates are considered for the first-order Hamiltonian systems with anisotropic growth,i.e.,the Hamiltonian functions may have super-quadratic,sub-quadra...In this paper,the problem of brake orbits with minimal period estimates are considered for the first-order Hamiltonian systems with anisotropic growth,i.e.,the Hamiltonian functions may have super-quadratic,sub-quadratic and quadratic behaviors simultaneously in different variable components.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
基金supported by the NSFC(12301138)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L377)+1 种基金the Doctoral Scientific Research Foundation of Shanxi Datong University(2018-B-15)The second author’s work was supported by the NSFC(12171108).
文摘In this paper,the problem of brake orbits with minimal period estimates are considered for the first-order Hamiltonian systems with anisotropic growth,i.e.,the Hamiltonian functions may have super-quadratic,sub-quadratic and quadratic behaviors simultaneously in different variable components.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.