期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
代价敏感特征选择和半监督学习相结合的乳腺癌辅助诊断 被引量:3
1
作者 丁孝年 陈松灿 《应用科学学报》 CAS CSCD 北大核心 2008年第3期319-325,共7页
乳腺癌在X光图像下的主要表现是肿块和微钙化点.传统的诊断方法一般假设从图像肿块和微钙化点中提取的特征是正确有效的,且采用监督分类器进行诊断.但在实际中,一方面不能完全保证所有被提取特征的正确性;另一方面,由于高昂的标记代价,... 乳腺癌在X光图像下的主要表现是肿块和微钙化点.传统的诊断方法一般假设从图像肿块和微钙化点中提取的特征是正确有效的,且采用监督分类器进行诊断.但在实际中,一方面不能完全保证所有被提取特征的正确性;另一方面,由于高昂的标记代价,导致大量样本无标记.针对上述两个问题,本文提出了一种新颖的诊断方法.一方面,为了消除特征冗余和选择出对分类有用的判别特征,提出改进的代价敏感选择性集成法用于选择特征;另一方面,为了利用未标记样本信息,设计了一致性协同学习半监督分类器.在公共乳腺癌数据库DDSM上的实验表明,所设计的乳腺癌辅助诊断方法与其他方法相比具有更好的诊断性能. 展开更多
关键词 微钙化簇 乳腺X片 计算机辅助诊断 代价敏感的选择性集成 一致性协同学习
在线阅读 下载PDF
嵌入代价敏感的极限学习机相异性集成的基因表达数据分类 被引量:7
2
作者 安春霖 陆慧娟 +1 位作者 魏莎莎 杨小兵 《计算机科学》 CSCD 北大核心 2014年第12期211-215,共5页
极限学习机的相异性集成算法(Dissimilarity Based Ensemble of Extreme Learning Machine,D-ELM)在基因表达数据分类中能够得到较稳定的分类效果,然而这种分类算法是基于分类精度的,当所给样本的误分类代价不相等时,不能直接实现代价... 极限学习机的相异性集成算法(Dissimilarity Based Ensemble of Extreme Learning Machine,D-ELM)在基因表达数据分类中能够得到较稳定的分类效果,然而这种分类算法是基于分类精度的,当所给样本的误分类代价不相等时,不能直接实现代价敏感分类过程中的最小平均误分类代价的要求。通过在分类过程中引入概率估计以及误分类代价和拒识代价重新构造分类结果,提出了基于相异性集成极限学习机的代价敏感算法(CS-D-ELM)。该算法被运用到基因表达数据集上,得到了较好的分类效果。 展开更多
关键词 极限学习机 相异性集成 代价敏感 基因表达数据 分类
在线阅读 下载PDF
多标签代价敏感分类集成学习算法 被引量:23
3
作者 付忠良 《自动化学报》 EI CSCD 北大核心 2014年第6期1075-1085,共11页
尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集... 尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集成学习算法.算法的平均错分代价为误检标签代价和漏检标签代价之和,算法的流程类似于自适应提升(Adaptive boosting,AdaBoost)算法,其可以自动学习多个弱分类器来组合成强分类器,强分类器的平均错分代价将随着弱分类器增加而逐渐降低.详细分析了多标签代价敏感分类集成学习算法和多类代价敏感AdaBoost算法的区别,包括输出标签的依据和错分代价的含义.不同于通常的多类代价敏感分类问题,多标签代价敏感分类问题的错分代价要受到一定的限制,详细分析并给出了具体的限制条件.简化该算法得到了一种多标签AdaBoost算法和一种多类代价敏感AdaBoost算法.理论分析和实验结果均表明提出的多标签代价敏感分类集成学习算法是有效的,该算法能实现平均错分代价的最小化.特别地,对于不同类错分代价相差较大的多分类问题,该算法的效果明显好于已有的多类代价敏感AdaBoost算法. 展开更多
关键词 多标签分类 代价敏感学习 集成学习 自适应提升算法 多分类
在线阅读 下载PDF
基于K最近邻样本平均距离的代价敏感算法的集成 被引量:6
4
作者 杨浩 王宇 张中原 《计算机应用》 CSCD 北大核心 2019年第7期1883-1887,共5页
为了解决不均衡数据集的分类问题和一般的代价敏感学习算法无法扩展到多分类情况的问题,提出了一种基于 K 最近邻( K NN)样本平均距离的代价敏感算法的集成方法。首先,根据最大化最小间隔的思想提出一种降低决策边界样本密度的重采样方... 为了解决不均衡数据集的分类问题和一般的代价敏感学习算法无法扩展到多分类情况的问题,提出了一种基于 K 最近邻( K NN)样本平均距离的代价敏感算法的集成方法。首先,根据最大化最小间隔的思想提出一种降低决策边界样本密度的重采样方法;接着,采用每类样本的平均距离作为分类结果的判断依据,并提出一种符合贝叶斯决策理论的学习算法,使得改进后的算法具备代价敏感性;最后,对改进后的代价敏感算法按 K 值进行集成,以代价最小为原则,调整各基学习器的权重,得到一个以总体误分代价最低为目标的代价敏感AdaBoost算法。实验结果表明,与传统的 K NN算法相比,改进后的算法在平均误分代价上下降了31.4个百分点,并且代价敏感性能更好。 展开更多
关键词 代价敏感 最大化最小间隔 样本间距离 贝叶斯决策理论 集成
在线阅读 下载PDF
考虑代价敏感的高速公路偷逃费行为识别模型
5
作者 赵建东 许慧玲 +2 位作者 吕行 李平安 黄诗音 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期10-19,共10页
为有效提升高速公路车辆偷逃通行费稽查效率,基于电子不停车收费(ETC)数据,结合K最近邻(KNN)和集成学习(Adaboost)算法及代价敏感学习机制,提出一种高速公路车辆偷逃费行为识别模型。针对原始ETC收费流水数据量大且冗余的特点,制定数据... 为有效提升高速公路车辆偷逃通行费稽查效率,基于电子不停车收费(ETC)数据,结合K最近邻(KNN)和集成学习(Adaboost)算法及代价敏感学习机制,提出一种高速公路车辆偷逃费行为识别模型。针对原始ETC收费流水数据量大且冗余的特点,制定数据离散化和标准化处理规则,修复并规范数据形态后,提取两类逃费特征。通过分析ETC数据集遴选大车小标等7种逃费类型作为主要研究对象。针对逃费数据“高维”特点导致的模型分类效率低问题,通过Pearson与Spearman相关性分析和ReliefF重要性分析选取表现逃费特性的最佳特征子集。针对逃费车辆与正常车辆的类别“不平衡”现象所引发的模型过拟合问题,构建组合分类模型,在Adaboost算法中将KNN作为基分类器,先通过TomekLinks欠采样缓解不同类边界模糊问题,再引入代价敏感学习机制,提高模型对少数类(逃费车)的重视程度来缓解对多数类(正常车)的判别倾向。最后,对比不同分类模型对各类逃费事件的识别效果,验证融合代价敏感学习机制的KNN-Adaboost模型的性能。结果表明,该研究提出的模型识别精确率达0.98,召回率达0.96,F1系数达0.97,Kappa系数达0.95,较其他模型能更好地解决样本类不均衡问题,对少数类样本具有较高识别精度,可为提升高速公路收费稽查效率提供参考。 展开更多
关键词 公路运输 集成学习 机器学习 代价敏感 特征选择
在线阅读 下载PDF
结合代价敏感半监督集成学习的糖尿病视网膜病变分级 被引量:2
6
作者 任福龙 曹鹏 +1 位作者 万超 赵大哲 《计算机应用》 CSCD 北大核心 2018年第7期2124-2129,共6页
针对传统糖尿病视网膜病变(糖网)分级诊断系统中,由于数据集中缺少病灶区域的标记和类别分布的不平衡性导致无法有效地进行监督性分类的问题,提出基于代价敏感的半监督Bagging(CS-SemiBagging)的糖网分级方法。首先,从眼底图像上删除视... 针对传统糖尿病视网膜病变(糖网)分级诊断系统中,由于数据集中缺少病灶区域的标记和类别分布的不平衡性导致无法有效地进行监督性分类的问题,提出基于代价敏感的半监督Bagging(CS-SemiBagging)的糖网分级方法。首先,从眼底图像上删除视网膜血管,并在此图像上检测疑似的红色病灶(微动脉瘤(MAs)与出血斑(HEMs));然后,从颜色、形状和纹理方面提取22维的特征用于描述每个病灶区域;其次,构建一个CS-SemiBagging模型对MAs与HEMs进行分类;最后,依据不同病灶的数量将糖网划分为4级。通过对国际公共数据集MESSIDOR进行糖网分级评估实验,所提方法获得平均准确率为90.2%,与经典的半监督学习的Co-training方法相比提高了4.9个百分点。实验结果表明,CS-SemiBagging方法在无需提供病灶标注的情况下,能够高效自动地对糖网进行分级,从而既能免除医学图像中标注病灶的费时费力,又可以避免样本类别分布不平衡对分类算法的性能影响,获得较好的效果。 展开更多
关键词 糖尿病视网膜病变 分类 代价敏感学习 半监督学习 集成学习
在线阅读 下载PDF
基于代价敏感神经网络集成模型的类别不平衡问题研究 被引量:3
7
作者 张俊杰 曹丽 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第11期1573-1579,共7页
在解决类别不平衡问题的过程中,传统分类模型往往偏向对大类别样本的学习,影响模型分类效果。基于此,文章从数据采样、模型选择2方面入手,给出代价敏感神经网络集成(cost-sensitive neural network ensemble,CSNN_Ensemble)模型。首先... 在解决类别不平衡问题的过程中,传统分类模型往往偏向对大类别样本的学习,影响模型分类效果。基于此,文章从数据采样、模型选择2方面入手,给出代价敏感神经网络集成(cost-sensitive neural network ensemble,CSNN_Ensemble)模型。首先通过随机下采样,得到多组训练数据集;其次对每组训练数据集训练BP神经网络,并结合代价矩阵构造多个代价敏感神经网络;最后以代价敏感神经网络为基学习器构造并行集成模型,并以投票的方式进行最终决策。实验结果表明,该模型在F 1值、AUC值和期望总体代价3种性能方面表现优越,并具有一定的鲁棒性。 展开更多
关键词 类别不平衡 随机下采样 代价敏感神经网络(CSNN) 集成模型 Friedman检验
在线阅读 下载PDF
代价敏感分类的软件缺陷预测方法 被引量:15
8
作者 李勇 黄志球 +1 位作者 房丙午 王勇 《计算机科学与探索》 CSCD 2014年第12期1442-1451,共10页
软件缺陷预测是提高软件测试效率,保证软件可靠性的重要途径。考虑到软件缺陷预测模型对软件模块错误分类代价的不同,提出了代价敏感分类的软件缺陷预测模型构建方法。针对代码属性度量数据,采用Bagging方式有放回地多次随机抽取训练样... 软件缺陷预测是提高软件测试效率,保证软件可靠性的重要途径。考虑到软件缺陷预测模型对软件模块错误分类代价的不同,提出了代价敏感分类的软件缺陷预测模型构建方法。针对代码属性度量数据,采用Bagging方式有放回地多次随机抽取训练样本来构建代价敏感分类的决策树基分类器,然后通过投票的方式集成后进行软件模块的缺陷预测,并给出模型构建过程中代价因子最优值的判定选择方法。使用公开的NASA软件缺陷预测数据集进行仿真实验,结果表明该方法在保证缺陷预测率的前提下,误报率明显降低,综合评价指标AUC和F值均优于现有方法。 展开更多
关键词 软件缺陷预测 代价敏感分类 最优代价因子 决策树 集成算法
在线阅读 下载PDF
基于Boosting的代价敏感软件缺陷预测方法 被引量:6
9
作者 杨杰 燕雪峰 张德平 《计算机科学》 CSCD 北大核心 2017年第8期176-180,206,共6页
Boosting重抽样是常用的扩充小样本数据集的方法,首先针对抽样过程中存在的维数灾难现象,提出随机属性子集选择方法以进行降维处理;进而针对软件缺陷预测对于漏报与误报的惩罚因子不同的特点,在属性选择过程中添加代价敏感算法。以多个... Boosting重抽样是常用的扩充小样本数据集的方法,首先针对抽样过程中存在的维数灾难现象,提出随机属性子集选择方法以进行降维处理;进而针对软件缺陷预测对于漏报与误报的惩罚因子不同的特点,在属性选择过程中添加代价敏感算法。以多个基本k-NN预测器为弱学习器,以代价最小为属性删除原则,得到当前抽样集的k值与属性子集的预测器集合,采用代价敏感的权重更新机制对抽样过程中的不同数据实例赋予相应权值,由所有预测器集合构成自适应的集成k-NN强学习器并建立软件缺陷预测模型。基于NASA数据集的实验结果表明,在小样本情况下,基于Boosting的代价敏感软件缺陷预测方法预测的漏报率有较大程度降低,误报率有一定程度增加,整体性能优于原来的Boosting集成预测方法。 展开更多
关键词 软件缺陷预测 BOOSTING 代价敏感 随机属性选择 集成k-NN
在线阅读 下载PDF
基于代价敏感的AdaBoost算法改进 被引量:4
10
作者 王学玲 王建林 《计算机应用与软件》 CSCD 北大核心 2013年第10期123-125,138,共4页
针对传统的AdaBoost算法只关注分类错误率最小的问题,在分析传统的AdaBoost算法实质基础上,提出一种基于代价敏感的改进AdaBoost算法。首先在训练基分类器阶段,对于数据集上的不同类别样本根据其错分后造成的损失大小不同来更新样本权值... 针对传统的AdaBoost算法只关注分类错误率最小的问题,在分析传统的AdaBoost算法实质基础上,提出一种基于代价敏感的改进AdaBoost算法。首先在训练基分类器阶段,对于数据集上的不同类别样本根据其错分后造成的损失大小不同来更新样本权值,使算法由关注分类错误率最小转而关注分类代价最小。然后,在组合分类器输出时采用预测概率加权方法来取代传统AdaBoost算法采用的预测类别加权的方法。最后通过实验验证了改进算法的有效性。 展开更多
关键词 ADABOOST算法 权重更新 集成学习 代价敏感
在线阅读 下载PDF
期望损失代价敏感优化的借贷预测算法研究
11
作者 孟志青 姜琦 《浙江工业大学学报》 CAS 北大核心 2020年第4期418-425,共8页
借贷数据规模大、维度复杂和极度不平衡等特性致使借贷预测的精度一直难以提升。为此,设计量化借贷期望损失值作为代价敏感项来优化集成模型的借贷预测算法,实现消除比例失衡的训练样本对预测模型的影响;提出基于代价敏感集成学习的借... 借贷数据规模大、维度复杂和极度不平衡等特性致使借贷预测的精度一直难以提升。为此,设计量化借贷期望损失值作为代价敏感项来优化集成模型的借贷预测算法,实现消除比例失衡的训练样本对预测模型的影响;提出基于代价敏感集成学习的借贷预测算法——ES-XGB和ES-LGB。其核心是改进了近年来表现优异的集成算法XGBoost和LightGBM,将优化后损失项加入模型的迭代学习过程中,以达到提升整体预测精度和提高违约类检出的目的。使用Lending Club平台提供的数据来做数值实验,证明所提出的算法模型在借贷预测中表现最佳。 展开更多
关键词 借贷预测 不平衡数据 期望损失 代价敏感 集成模型
在线阅读 下载PDF
一种新的多分类代价敏感算法 被引量:2
12
作者 邓少军 冯少荣 林子雨 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期231-236,共6页
为了提高代价敏感分类算法MetaCost的准确率,降低错分代价,提出了多类别问题下的一种代价敏感分类算法(简称D-MetaCost算法).该算法利用MetaCost算法,通过多次取样生成多个模型,依据它们的分类准确率,选择其中准确率较高的前几个基分类... 为了提高代价敏感分类算法MetaCost的准确率,降低错分代价,提出了多类别问题下的一种代价敏感分类算法(简称D-MetaCost算法).该算法利用MetaCost算法,通过多次取样生成多个模型,依据它们的分类准确率,选择其中准确率较高的前几个基分类器,将它们与最后阶段新生成的分类器聚集在一起得到最终分类模型.实验表明,D-MetaCost算法在准确率和代价方面比经典的MetaCost算法有明显的改进和提高. 展开更多
关键词 分类代价 代价敏感 集成学习 MetaCost D-MetaCost
在线阅读 下载PDF
基于改进的代价敏感决策树的网络贷款分类 被引量:5
13
作者 郭冰楠 吴广潮 《计算机应用》 CSCD 北大核心 2019年第10期2888-2892,共5页
在网络贷款用户数据集中,贷款成功和贷款失败的用户数量存在着严重的不平衡,传统的机器学习算法在解决该类问题时注重整体分类正确率,导致贷款成功用户的预测精度较低。针对此问题,在代价敏感决策树敏感函数的计算中加入类分布,以减弱... 在网络贷款用户数据集中,贷款成功和贷款失败的用户数量存在着严重的不平衡,传统的机器学习算法在解决该类问题时注重整体分类正确率,导致贷款成功用户的预测精度较低。针对此问题,在代价敏感决策树敏感函数的计算中加入类分布,以减弱正负样本数量对误分类代价的影响,构建改进的代价敏感决策树;以该决策树作为基分类器并以分类准确度作为衡量标准选择表现较好的基分类器,将它们与最后阶段生成的分类器集成得到最终的分类器。实验结果表明,与已有的常用于解决此类问题的算法(如MetaCost算法、代价敏感决策树、AdaCost算法等)相比,改进的代价敏感决策树对网络贷款用户分类可以降低总体的误分类错误率,具有更强的泛化能力。 展开更多
关键词 不平衡 代价敏感 网络贷款 集成学习 决策树
在线阅读 下载PDF
不平衡数据的集成分类算法综述 被引量:75
14
作者 李勇 刘战东 张海军 《计算机应用研究》 CSCD 北大核心 2014年第5期1287-1291,共5页
集成学习是通过集成多个基分类器共同决策的机器学习技术,通过不同的样本集训练有差异的基分类器,得到的集成分类器可以有效地提高学习效果。在基分类器的训练过程中,可以通过代价敏感技术和数据采样实现不平衡数据的处理。由于集成学... 集成学习是通过集成多个基分类器共同决策的机器学习技术,通过不同的样本集训练有差异的基分类器,得到的集成分类器可以有效地提高学习效果。在基分类器的训练过程中,可以通过代价敏感技术和数据采样实现不平衡数据的处理。由于集成学习在不平衡数据分类的优势,针对不平衡数据的集成分类算法得到广泛研究。详细分析了不平衡数据集成分类算法的研究现状,比较了现有算法的差异和各自存在的优点及问题,提出和分析了有待进一步研究的问题。 展开更多
关键词 不平衡数据 集成学习 分类 代价敏感 数据采样
在线阅读 下载PDF
基于集成的年龄估计方法 被引量:11
15
作者 张宇 周志华 《自动化学报》 EI CSCD 北大核心 2008年第8期997-1000,共4页
近十年来,由于广泛的应用前景,关于人脸识别的研究得到了广泛的关注.但目前有一种影响人脸识别技术的因素尚未被研究者所重视,那就是年龄变化.而在适用于年龄变化的人脸识别技术中有一个重要的问题,即年龄估计.本文基于典型相关分析和... 近十年来,由于广泛的应用前景,关于人脸识别的研究得到了广泛的关注.但目前有一种影响人脸识别技术的因素尚未被研究者所重视,那就是年龄变化.而在适用于年龄变化的人脸识别技术中有一个重要的问题,即年龄估计.本文基于典型相关分析和代价敏感学习提出了两种年龄估计算法,并在此基础上利用集成技术来提高年龄估计的准确性.最终实验结果验证了本文方法的有效性. 展开更多
关键词 人脸识别 年龄估计 典型相关分析 代价敏感学习 集成学习
在线阅读 下载PDF
基于Ext-GBDT集成的类别不平衡信用评分模型 被引量:33
16
作者 陈启伟 王伟 +1 位作者 马迪 毛伟 《计算机应用研究》 CSCD 北大核心 2018年第2期421-427,共7页
针对现实信用评分业务中样本类别不平衡和代价敏感问题,以及金融机构更期望以得分的方式直观地认识贷款申请人的信用风险的实际需求,提出一种基于Ext-GBDT集成的类别不平衡信用评分模型。使用欠采样的方法从"好"客户(大类)中... 针对现实信用评分业务中样本类别不平衡和代价敏感问题,以及金融机构更期望以得分的方式直观地认识贷款申请人的信用风险的实际需求,提出一种基于Ext-GBDT集成的类别不平衡信用评分模型。使用欠采样的方法从"好"客户(大类)中随机采样多份与全部"坏"客户(小类)等量的样本,分别与全部小类构成训练子集;用不同的训练子集及特征采样和参数扰动的方法训练得到多个差异化的Ext-GBDT子模型;然后使用简单平均法整合子模型的预测概率;最后将信用概率转换为信用评分。在UCI德国信用数据集上,以AUC和代价敏感错误率作为评价指标,与决策树、逻辑回归、朴素贝叶斯、支持向量机、随机森林及其集成模型等当前最为常用的信用评分模型进行对比,验证了该模型的有效性。 展开更多
关键词 信用评分 类别不平衡 代价敏感 Ext-GBDT 集成学习
在线阅读 下载PDF
不平衡数据多粒度集成分类算法研究 被引量:8
17
作者 陈丽芳 代琪 赵佳亮 《计算机工程与科学》 CSCD 北大核心 2021年第5期917-925,共9页
针对传统模型在解决不平衡数据分类问题时存在精度低、稳定性差、泛化能力弱等问题,提出基于序贯三支决策多粒度集成分类算法MGE-S3WD。采用二元关系实现粒层动态划分;根据代价矩阵计算阈值并构建多层次粒结构,将各粒层数据划分为正域... 针对传统模型在解决不平衡数据分类问题时存在精度低、稳定性差、泛化能力弱等问题,提出基于序贯三支决策多粒度集成分类算法MGE-S3WD。采用二元关系实现粒层动态划分;根据代价矩阵计算阈值并构建多层次粒结构,将各粒层数据划分为正域、边界域和负域;将各粒层上的划分,按照正域与负域、正域与边界域、负域与边界域重新组合形成新的数据子集,并在各数据子集上构建基分类器,实现不平衡数据的集成分类。仿真结果表明,该算法能够有效降低数据子集的不平衡比,提升集成学习中基分类器的差异性,在G-mean和F-measure12个评价指标下,分类性能优于或部分优于其他集成分类算法,有效提高了分类模型的分类精度和稳定性,为不平衡数据集的集成学习提供了新的研究思路。 展开更多
关键词 序贯三支决策 多粒度 代价敏感 不平衡数据 集成学习
在线阅读 下载PDF
基于DESMID-AD动态选择的类别不平衡信用评估模型 被引量:3
18
作者 向欣 陆歌皓 《计算机应用研究》 CSCD 北大核心 2021年第12期3604-3610,共7页
针对现实信用评估业务中样本类别不平衡和代价敏感的情况,为降低信用风险评估的误分类损失,提出一种基于DESMID-AD动态选择的信用评估集成模型,根据每一个测试样本的特点动态地选择合适的基分类器对其进行信用预测。为提高模型对信用差... 针对现实信用评估业务中样本类别不平衡和代价敏感的情况,为降低信用风险评估的误分类损失,提出一种基于DESMID-AD动态选择的信用评估集成模型,根据每一个测试样本的特点动态地选择合适的基分类器对其进行信用预测。为提高模型对信用差客户(小类)的识别能力,在基分类器训练前使用过采样的方法对训练数据作类别平衡,采用元学习的方式基于多个指标进行基分类器的性能评估并在此阶段设计权重机制增强小类的影响。在三个公开信用评估数据集上,以AUC、一型、二型错误率以及误分类代价作为评价指标,与九种信用评估常用模型做比较,证明了该方法在信用评估领域的有效性和可行性。 展开更多
关键词 信用评估 类别不平衡 代价敏感 动态选择 动态集成选择 集成学习
在线阅读 下载PDF
基于DE-CStacking集成的基因表达数据分类算法 被引量:2
19
作者 高慧云 陆慧娟 +1 位作者 严珂 叶敏超 《小型微型计算机系统》 CSCD 北大核心 2019年第8期1601-1605,共5页
从基因层面对癌症进行诊断将有效提高患者的治愈率,但癌症基因表达数据集通常存在高维、小样本、高噪声并且类别不平衡等问题,对此类数据进行分类是一项具有挑战性的任务.针对这些问题,提出一种基于差分进化的代价敏感Stacking(DE-CStac... 从基因层面对癌症进行诊断将有效提高患者的治愈率,但癌症基因表达数据集通常存在高维、小样本、高噪声并且类别不平衡等问题,对此类数据进行分类是一项具有挑战性的任务.针对这些问题,提出一种基于差分进化的代价敏感Stacking(DE-CStacking)集成的基因表达数据分类算法,采用随机森林、K近邻、朴素贝叶斯作为Stacking集成的初级学习器,将代价敏感的支持向量机作为次级学习器,初级学习器的输出类概率和原始特征集作为次级学习器的输入,并采用差分进化对这些学习器的参数进行优化.通过在四个UCI的癌症基因数据上的实验对比,相对于其他传统的集成算法,DE-CStacking算法在癌症基因数据上表现出更好的泛化性能. 展开更多
关键词 Stacking集成 差分进化 代价敏感 基因表达数据
在线阅读 下载PDF
基于ECSDNN的航空安全事件风险等级预测
20
作者 冯霞 桑潇 左海超 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1117-1128,共12页
航空安全事件风险等级预测是主动风险管理的重要手段。考虑海量航空安全事件数据呈现的高维复杂、类不平衡等特性,提出一种基于集成代价敏感深度神经网络(ECSDNN)的航空安全事件风险等级预测方法。采用分类型属性嵌入特征编码和数值型... 航空安全事件风险等级预测是主动风险管理的重要手段。考虑海量航空安全事件数据呈现的高维复杂、类不平衡等特性,提出一种基于集成代价敏感深度神经网络(ECSDNN)的航空安全事件风险等级预测方法。采用分类型属性嵌入特征编码和数值型属性拼接的方法实现航空安全事件数据的特征表示;综合考虑错分比例和固定代价设计代价敏感矩阵和代价敏感损失函数,构建基于代价敏感深度神经网络(CSDNN)的基分类器模型;采用硬投票方法,集成多个参数不同、性能各异的基分类器,构建航空安全事件风险等级预测模型。在航空安全事件报告系统(ASRS)数据集上的实验结果表明:相比基准算法,所提ECSDNN模型的预测准确率提升了4.51%;相比单个CSDNN基分类器,所提ECSDNN模型的预测准确率提升了3.17%。验证了基于ECSDNN的航空安全事件风险等级预测方法的有效性。 展开更多
关键词 航空安全 风险等级预测 嵌入特征编码 代价敏感 深度神经网络 集成学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部