期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
不均衡数据下基于CS-Boosting的故障诊断算法 被引量:6
1
作者 姚培 王仲生 +1 位作者 姜洪开 刘贞报 《振动.测试与诊断》 EI CSCD 北大核心 2013年第1期111-115,169,共5页
针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的... 针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的惩罚因子,并通过决策规则的训练使代价损失函数最小化。将该算法应用到滚动轴承故障诊断中,并与传统的Adaboost算法进行对比。试验结果表明,在转子系统不能获取更多故障数据的情况下,该算法的故障诊断性能较其他算法有明显的提高。 展开更多
关键词 代价敏感度 滚动轴承 BOOSTING算法 CS—Boosting 代价损失函数
在线阅读 下载PDF
价值样本选取的不均衡分类 被引量:5
2
作者 徐剑 王馨月 +2 位作者 才子昕 沈启航 景丽萍 《计算机科学与探索》 CSCD 北大核心 2020年第3期401-409,共9页
基于传统模型的实际分类问题,不均衡分类是一个常见的挑战问题。由于传统分类器较难学习少数类数据集内部的本质结构,导致更多地偏向于多数类,从而使少数类样本被误分为多数类样本。与此同时,样本集中的冗余数据和噪音数据也会对分类器... 基于传统模型的实际分类问题,不均衡分类是一个常见的挑战问题。由于传统分类器较难学习少数类数据集内部的本质结构,导致更多地偏向于多数类,从而使少数类样本被误分为多数类样本。与此同时,样本集中的冗余数据和噪音数据也会对分类器造成困扰。为有效处理上述问题,提出一种新的不均衡分类框架SSIC,该框架充分考虑数据统计特性,自适应从大小类中选取有价值样本,并结合代价敏感学习构建不均衡数据分类器。首先,SSIC通过组合部分多数类实例和所有少数类实例来构造几个平衡的数据子集。在每个子集上,SSIC充分利用数据的特征来提取可区分的高级特征并自适应地选择重要样本,从而可以去除冗余噪声数据。其次,SSIC通过在每个样本上自动分配适当的权重来引入一种代价敏感的支持向量机(SVM),以便将少数类视为与多数类相等。 展开更多
关键词 类的不均衡学习 分类 压缩激励网络 代价敏感度学习
在线阅读 下载PDF
基于深度自编码网络的运动目标检测 被引量:9
3
作者 徐培 蔡小路 +1 位作者 何文伟 谢易道 《计算机应用》 CSCD 北大核心 2014年第10期2934-2937,2962,共5页
针对从动态背景中提取前景效果较差的问题,提出了一种基于深度自编码网络的运动目标检测方法。首先,用一个三层的深度自编码网络从视频图像中提取不包含运动目标的背景图像,将背景图像作为变量构造了深度自编码网络的代价函数;然后,构... 针对从动态背景中提取前景效果较差的问题,提出了一种基于深度自编码网络的运动目标检测方法。首先,用一个三层的深度自编码网络从视频图像中提取不包含运动目标的背景图像,将背景图像作为变量构造了深度自编码网络的代价函数;然后,构造了一个分离函数得到了输入图像的背景图像,再用另一个三层的深度自编码网络学习提取出的背景图像;为了使深度自编码网络的学习能够在线地提取运动目标,还提出了一种在线学习算法,通过寻找对代价函数敏感度较低的权重进行合并,从而能够对更多的视频图像进行处理。实验结果表明,所提方法在从动态背景中提取出前景运动目标上相比Lu等的前景检测的工作(LU C,SHI J,JIA J.Online robust dictionary learning.Proceeding of the 2013 IEEE Conference on Computer Vision and Pattern Recognition,Piscataway:IEEE Press,2013:415-422)检测的准确率提高了6%,并且误报率降低了4.5%。在实际的应用中,能够获得更好的前景背景分离效果,为视频分析等方面的研究奠定更好的基础。 展开更多
关键词 运动目标检测 视频图像 深度自编码网络 在线学习 代价函数敏感度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部