期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进的格拉斯曼流形的模糊人脸图像识别 被引量:1
1
作者 曾爱林 《现代电子技术》 北大核心 2015年第22期34-36,40,共4页
传统算法进行模糊人脸识别的过程中,一旦人脸表情发生变化,人脸特征也将发生改变,导致人脸识别的准确性降低。为此,提出一种基于改进的格拉斯曼流形的模糊人脸识别方法。在格拉斯曼流形上构建全部模糊人脸样本图像的近邻图来估计人脸特... 传统算法进行模糊人脸识别的过程中,一旦人脸表情发生变化,人脸特征也将发生改变,导致人脸识别的准确性降低。为此,提出一种基于改进的格拉斯曼流形的模糊人脸识别方法。在格拉斯曼流形上构建全部模糊人脸样本图像的近邻图来估计人脸特征分布的几何结构,然后将其作为正则化项整合到模糊人脸识别的目标函数中,从而获得更精确的人脸特征投影矩阵。仿真实验结果表明,利用改进算法进行模糊人脸识别,能够提高识别的准确率和效率,效果令人满意。 展开更多
关键词 改进的格拉斯曼流形 模糊人脸识别 人脸特征分布 人脸识别方法
在线阅读 下载PDF
Discriminant embedding by sparse representation and nonparametric discriminant analysis for face recognition
2
作者 杜春 周石琳 +2 位作者 孙即祥 孙浩 王亮亮 《Journal of Central South University》 SCIE EI CAS 2013年第12期3564-3572,共9页
A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DE... A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DESN, the sparse local scatter and multi-class nonparametric between-class scatter were exploited for within-class compactness and between-class separability description, respectively. These descriptions, inspired by sparse representation theory and nonparametric technique, are more discriminative in dealing with complex-distributed data. Furthermore, DESN seeks for the optimal projection matrix by simultaneously maximizing the nonparametric between-class scatter and minimizing the sparse local scatter. The use of Fisher discriminant analysis further boosts the discriminating power of DESN. The proposed DESN was applied to data visualization and face recognition tasks, and was tested extensively on the Wine, ORL, Yale and Extended Yale B databases. Experimental results show that DESN is helpful to visualize the structure of high-dimensional data sets, and the average face recognition rate of DESN is about 9.4%, higher than that of other algorithms. 展开更多
关键词 dimensionality reduction sparse representation nonparametric discriminant analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部