期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于ICA的多姿态人脸表示 被引量:2
1
作者 王刚 刘伟 冯贵玉 《国防科技大学学报》 EI CAS CSCD 北大核心 2003年第3期84-87,共4页
将独立成分分析(ICA)应用于多姿态人脸识别。对比分析了ICA和主成分分析(PCA)两种人脸识别方法的差异,并重点研究了多姿态人脸的独立成分(IC)表示。在基于权向量幅值的方法基础上,引入了基于比例因子的IC核选择的新方法。实验表明,新方... 将独立成分分析(ICA)应用于多姿态人脸识别。对比分析了ICA和主成分分析(PCA)两种人脸识别方法的差异,并重点研究了多姿态人脸的独立成分(IC)表示。在基于权向量幅值的方法基础上,引入了基于比例因子的IC核选择的新方法。实验表明,新方法有利于提高识别的准确率和识别的效率。 展开更多
关键词 独立成分分析 多姿态 人脸表示 比例因子
在线阅读 下载PDF
基于偏最小二乘分析的人脸表示与识别
2
作者 孙权森 陈强 夏德深 《江南大学学报(自然科学版)》 CAS 2008年第1期1-5,共5页
基于偏最小二乘回归分析,提出了一种新的人脸表示与重构方法.与主成分分析相比,通过偏最小二乘所抽取的低维人脸表示特征具有更好的分类性能.在ORL人脸数据库上的实验结果表明,基于偏最小二乘方法对于测试图像进行重构优于主成分分析方... 基于偏最小二乘回归分析,提出了一种新的人脸表示与重构方法.与主成分分析相比,通过偏最小二乘所抽取的低维人脸表示特征具有更好的分类性能.在ORL人脸数据库上的实验结果表明,基于偏最小二乘方法对于测试图像进行重构优于主成分分析方法,并且分类结果也好于后者. 展开更多
关键词 偏最小二乘 主成分分析 人脸表示 人脸识别
在线阅读 下载PDF
一种基于加权变形的2DPCA的人脸特征提取方法 被引量:24
3
作者 曾岳 冯大政 《电子与信息学报》 EI CSCD 北大核心 2011年第4期769-774,共6页
该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分... 该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分别对人脸3个子部分分别提取特征,然后根据最近邻理论和权值进行分类。经过在ORL人脸库和YALE人脸库的实验研究表明:与2DPCA相比,提高了人脸空间的识别率,压缩了人脸空间的系数,减少了识别时间;在识别的准确率方面,更优于传统的Fisherfaces,IC,Kernel Eigenfaces的算法。 展开更多
关键词 人脸识别 人脸表示 主成分分析法(PCA) 2维主成分分析法(2DPCA)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部