期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
SAR目标识别对抗攻击综述:从数字域迈向物理域
1
作者 阮航 崔家豪 +4 位作者 毛秀华 任建迎 罗镔延 曹航 李海峰 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第6期1298-1326,共29页
基于深度神经网络的合成孔径雷达(SAR)图像目标识别已成为SAR应用领域的研究热点和前沿方向。然而,有研究指出深度神经网络模型易受到对抗样本攻击。对抗样本定义为在数据集内故意引入微小扰动所产生的输入样本,这种扰动足以使模型高信... 基于深度神经网络的合成孔径雷达(SAR)图像目标识别已成为SAR应用领域的研究热点和前沿方向。然而,有研究指出深度神经网络模型易受到对抗样本攻击。对抗样本定义为在数据集内故意引入微小扰动所产生的输入样本,这种扰动足以使模型高信度地产生错误判断。现有SAR对抗样本生成技术本质上仅作用于二维图像,即为数字域对抗样本。尽管近期有部分研究开始将SAR成像散射机理考虑用于对抗样本生成,但是仍然存在两个重要缺陷,一是仅在SAR图像上考虑成像散射机理,而没有将其置于SAR实际成像过程中进行考虑;二是在机制上无法实现三维物理域的攻击,即只实现了伪物理域对抗攻击。该文对SAR智能识别对抗攻击的技术现状和发展趋势进行了研究。首先,详细梳理了传统SAR图像对抗样本技术的发展脉络,并对各类技术的特点进行了对比分析,总结了现有技术存在的不足;其次,从SAR成像原理和实际过程出发,提出了物理域对抗攻击技术,通过调整目标物体的后向散射特性,或通过发射振幅和相位精细可调的干扰信号来实现对SAR智能识别算法对抗攻击的新思路,并展望了SAR对抗攻击在物理域下的具体实现方式;最后,进一步讨论了未来SAR智能对抗攻击技术的发展方向。 展开更多
关键词 对抗样本 合成孔径雷达(SAR) SAR目标识别 物理对抗攻击 深度神经网络(DNN)
在线阅读 下载PDF
基于多模态特征融合的人脸物理对抗样本性能预测算法 被引量:1
2
作者 周风帆 凌贺飞 +3 位作者 张锦元 夏紫薇 史宇轩 李平 《计算机科学》 CSCD 北大核心 2023年第8期280-285,共6页
人脸物理对抗样本攻击(Facial Physical Adversarial Attack,FPAA)指攻击者通过粘贴或佩戴物理对抗样本,如打印的眼镜、纸片等,在摄像头下被识别成特定目标的人脸,或者让人脸识别系统无法识别的攻击方式。已有FPAA的性能评测会受到多种... 人脸物理对抗样本攻击(Facial Physical Adversarial Attack,FPAA)指攻击者通过粘贴或佩戴物理对抗样本,如打印的眼镜、纸片等,在摄像头下被识别成特定目标的人脸,或者让人脸识别系统无法识别的攻击方式。已有FPAA的性能评测会受到多种环境因素的影响,且需要多个人工操作的环节,导致性能评测效率非常低下。为了减少人脸物理对抗样本性能评测方面的工作量,结合数字图片和环境因素之间的多模态性,提出了多模态特征融合预测算法(Multimodal Feature Fusion Prediction Algorithm,MFFP)。具体地,使用不同的网络提取攻击者人脸图片、受害者人脸图片和人脸数字对抗样本图片的特征,使用环境特征网络来提取环境因素中的特征,然后使用一个多模态特征融合网络对这些特征进行融合,多模态特征融合网络的输出即为所预测的人脸物理对抗样本图片和受害者图片之间的余弦相似度。MFFP算法在未知环境、未知FPAA算法的实验场景下取得了0.003的回归均方误差,其性能优于对比算法,验证了MFFP算法对FPAA性能预测的准确性,可以对FPAA性能进行快速评估,同时大幅降低人工操作的工作量。 展开更多
关键词 人工智能安全 对抗样本 人脸物理对抗样本攻击 性能预测 多模态特征融合
在线阅读 下载PDF
结合高斯滤波与MASK的G-MASK人脸对抗攻击 被引量:3
3
作者 李倩 向海昀 +2 位作者 张玉婷 甘昀 廖浩德 《计算机工程》 CAS CSCD 北大核心 2024年第2期308-316,共9页
深度神经网络的快速发展使其在计算机视觉和自然语言处理等领域取得较大成功,但是对抗攻击会导致神经网络的表现性能降低,对各类系统的安全保密性造成严重威胁。现有黑盒攻击方法在人脸识别中性能表现较差,攻击成功率较低且生成对抗样... 深度神经网络的快速发展使其在计算机视觉和自然语言处理等领域取得较大成功,但是对抗攻击会导致神经网络的表现性能降低,对各类系统的安全保密性造成严重威胁。现有黑盒攻击方法在人脸识别中性能表现较差,攻击成功率较低且生成对抗样本迁移性不高。为此,提出一种结合高斯滤波与掩码的对抗攻击方法G-MASK。利用Grad-CAM输出的热力图确定对抗样本的掩码区域,使其只在掩码区域施加扰动,提高黑盒攻击成功率,采用扰动集成方法提高黑盒迁移能力,增强黑盒攻击鲁棒性,对生成的扰动进行高斯平滑处理,降低集成模型之间干扰噪声的差异,提高图像质量且增强扰动掩蔽性。实验结果表明,针对不同的人脸识别模型,G-MASK方法在保证白盒攻击成功率较高的条件下能够显著提升黑盒攻击效果,并具有更优的掩蔽性,经过模型扰动集成的对抗样本白盒攻击成功率均提高至98.5%以上,黑盒攻击成功率最高达到75.9%,与快速梯度符号法(FGSM)、迭代快速梯度符号法(I-FGSM)和动量迭代梯度符号法(MI-FGSM)相比分别平均提升12.1、10.6和8.2个百分点,充分验证了该方法的有效性。 展开更多
关键词 对抗样本 黑盒攻击 人脸识别 高斯滤波 掩码
在线阅读 下载PDF
针对人脸识别卷积神经网络的局部背景区域对抗攻击 被引量:8
4
作者 张晨晨 王帅 +5 位作者 王文一 李迪然 李南 鲍华 李淑琪 高国庆 《光电工程》 CAS CSCD 北大核心 2023年第1期111-122,共12页
基于卷积神经网络(CNN)的识别器,由于其高识别率已经在人脸识别中广泛应用,但其滥用也带来隐私保护问题。本文提出了局部背景区域的人脸对抗攻击(BALA),可以作为一种针对CNN人脸识别器的隐私保护方案。局部背景区域添加扰动克服了现有... 基于卷积神经网络(CNN)的识别器,由于其高识别率已经在人脸识别中广泛应用,但其滥用也带来隐私保护问题。本文提出了局部背景区域的人脸对抗攻击(BALA),可以作为一种针对CNN人脸识别器的隐私保护方案。局部背景区域添加扰动克服了现有方法在前景人脸区域添加扰动所导致的原始面部特征损失的缺点。BALA使用了两阶段损失函数以及灰度化、均匀化方法,在更好地生成对抗块的同时提升了数字域到物理域的对抗效果。在照片重拍和场景实拍实验中,BALA对VGG-FACE人脸识别器的攻击成功率(ASR)比现有方法分别提升12%和3.8%。 展开更多
关键词 人脸识别 CNN 对抗攻击 背景 物理
在线阅读 下载PDF
图像对抗样本研究综述 被引量:14
5
作者 陈梦轩 张振永 +2 位作者 纪守领 魏贵义 邵俊 《计算机科学》 CSCD 北大核心 2022年第2期92-106,共15页
随着深度学习理论的发展,深度神经网络取得了一系列突破性进展,相继在多个领域得到了应用。其中,尤其以图像领域中的应用(如图像分类)最为普及与深入。然而,研究表明深度神经网络存在着诸多安全隐患,尤其是来自对抗样本的威胁,严重影响... 随着深度学习理论的发展,深度神经网络取得了一系列突破性进展,相继在多个领域得到了应用。其中,尤其以图像领域中的应用(如图像分类)最为普及与深入。然而,研究表明深度神经网络存在着诸多安全隐患,尤其是来自对抗样本的威胁,严重影响了图像分类的应用效果。因此,图像对抗样本的研究近年来越来越受到重视,研究者们从不同的角度对其进行了研究,相关研究成果也层出不穷,呈井喷之态。首先介绍了图像对抗样本的相关概念和术语,回顾并梳理了图像对抗样本攻击和防御方法的相关研究成果。特别是,根据攻击者的能力以及防御方法的基本思路对其进行了分类,并给出了不同类别的特点及存在的联系。接着,对图像对抗攻击在物理世界中的情况进行了简要阐述。最后,总结了图像对抗样本领域仍面临的挑战,并对未来的研究方向进行了展望。 展开更多
关键词 深度学习 图像领域 对抗样本 对抗攻击 防御方法 物理世界
在线阅读 下载PDF
针对目标检测器的假阳性对抗样本 被引量:1
6
作者 袁小鑫 胡军 黄永洪 《计算机研究与发展》 EI CSCD 北大核心 2022年第11期2534-2548,共15页
目标检测器现已被广泛应用在各类智能系统中,主要用于对图像中的物体进行识别与定位.然而,近年来的研究表明,目标检测器与DNNs分类器都易受数字对抗样本和物理对抗样本的影响.YOLOv3是实时检测任务中一种主流的目标检测器,现有攻击YOLOv... 目标检测器现已被广泛应用在各类智能系统中,主要用于对图像中的物体进行识别与定位.然而,近年来的研究表明,目标检测器与DNNs分类器都易受数字对抗样本和物理对抗样本的影响.YOLOv3是实时检测任务中一种主流的目标检测器,现有攻击YOLOv3的物理对抗样本的构造方式大多是将生成的较大对抗性扰动打印出来再粘贴在特定类别的物体表面.最近的研究中出现的假阳性对抗样本(false positive adversarial example,FPAE)可通过目标模型直接生成得到,人无法识别出该对抗样本图像中的内容,但目标检测器却以高置信度将其误识别为攻击者指定的目标类.现有以YOLOv3为目标模型生成FPAE的方法仅有AA(appearing attack)方法一种,该方法在生成FPAE的过程中,为提升FPAE的鲁棒性,会在迭代优化过程中加入EOT(expectation over transformation)图像变换来模拟各种物理条件,但是并未考虑拍摄时可能出现的运动模糊(motion blur)情况,进而影响到对抗样本的攻击效果.此外,生成的FPAE在对除YOLOv3外的目标检测器进行黑盒攻击时的攻击成功率并不高.为生成性能更好的FPAE,以揭示现有目标检测器存在的弱点和测试现有目标检测器的安全性,以YOLOv3目标检测器为目标模型,提出RTFP(robust and transferable false positive)对抗攻击方法.该方法在迭代优化过程中,除了加入典型的图像变换外,还新加入了运动模糊变换.同时,在损失函数的设计上,借鉴了C&W攻击中损失函数的设计思想,并将目标模型在FPAE的中心所在的网格预测出的边界框与FPAE所在的真实边界框之间的重合度(intersection over union,IOU)作为预测的边界框的类别损失的权重项.在现实世界中的多角度、多距离拍摄测试以及实际道路上的驾车拍摄测试中,RTFP方法生成的FPAE能够保持较强的鲁棒性且迁移性强于现有方法生成的FPAE. 展开更多
关键词 假阳性对抗样本 鲁棒性与迁移性 目标检测器 物理对抗攻击 实时检测
在线阅读 下载PDF
针对身份证文本识别的黑盒攻击算法研究
7
作者 徐昌凯 冯卫栋 +3 位作者 张淳杰 郑晓龙 张辉 王飞跃 《自动化学报》 EI CAS CSCD 北大核心 2024年第1期103-120,共18页
身份证认证场景多采用文本识别模型对身份证图片的字段进行提取、识别和身份认证,存在很大的隐私泄露隐患.并且,当前基于文本识别模型的对抗攻击算法大多只考虑简单背景的数据(如印刷体)和白盒条件,很难在物理世界达到理想的攻击效果,... 身份证认证场景多采用文本识别模型对身份证图片的字段进行提取、识别和身份认证,存在很大的隐私泄露隐患.并且,当前基于文本识别模型的对抗攻击算法大多只考虑简单背景的数据(如印刷体)和白盒条件,很难在物理世界达到理想的攻击效果,不适用于复杂背景、数据及黑盒条件.为缓解上述问题,本文提出针对身份证文本识别模型的黑盒攻击算法,考虑较为复杂的图像背景、更严苛的黑盒条件以及物理世界的攻击效果.本算法在基于迁移的黑盒攻击算法的基础上引入二值化掩码和空间变换,在保证攻击成功率的前提下提升了对抗样本的视觉效果和物理世界中的鲁棒性.通过探索不同范数限制下基于迁移的黑盒攻击算法的性能上限和关键超参数的影响,本算法在百度身份证识别模型上实现了100%的攻击成功率.身份证数据集后续将开源. 展开更多
关键词 对抗样本 黑盒攻击 身份证文本识别 物理世界 二值化掩码
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部