期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于3D卷积神经网络的活体人脸检测 被引量:7
1
作者 甘俊英 李山路 +1 位作者 翟懿奎 刘呈云 《信号处理》 CSCD 北大核心 2017年第11期1515-1522,共8页
非法入侵者通过伪装人脸骗取系统认证,给人脸认证系统带来了严重的威胁。因此,活体人脸检测成了人脸认证系统走向实用必须解决的一个重要课题。现有活体人脸检测方法多为基于照片的人脸攻击方面的研究成果,对于基于视频的人脸攻击,效果... 非法入侵者通过伪装人脸骗取系统认证,给人脸认证系统带来了严重的威胁。因此,活体人脸检测成了人脸认证系统走向实用必须解决的一个重要课题。现有活体人脸检测方法多为基于照片的人脸攻击方面的研究成果,对于基于视频的人脸攻击,效果并不理想。3D卷积神经网络(Convolutional Neural Network,CNN)具有深度学习的特点,能自动学到图像的分布式特征表示;与2D卷积相比,它能学到连续视频帧的动作信息。本文结合3D卷积神经网络的特性,提出利用3D卷积实现视频人脸伪装检测。通过提取3D卷积神经网络最后全连接层学到的时间空间特征,训练SVM(Support Vector Machine)分类器,实现真实人脸和伪装人脸的分类。实验采用两个人脸伪装公开数据库Replay Attack和CASIA,实现多尺度内部数据库测试和交叉数据库测试。实验结果相对于纹理特征及2D卷积方法有较大提高,可应用于视频人脸攻击的活体人脸检测。 展开更多
关键词 3D卷积神经网络 活体人脸检测 人脸反伪装 社会安全
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部