期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
多维背包问题的新型人类学习优化算法 被引量:2
1
作者 张翼鹏 刘勇 马良 《计算机应用研究》 CSCD 北大核心 2024年第12期3689-3700,共12页
针对目前算法求解多维背包时精度低、稳定性差、特别是无法有效求解超大规模算例等问题,提出一种新型人类学习优化算法。首先,基于认知心理学中的记忆理论,在基本人类学习算法中采用哈希函数表示人类在学习过程中的记忆行为,避免重复搜... 针对目前算法求解多维背包时精度低、稳定性差、特别是无法有效求解超大规模算例等问题,提出一种新型人类学习优化算法。首先,基于认知心理学中的记忆理论,在基本人类学习算法中采用哈希函数表示人类在学习过程中的记忆行为,避免重复搜索,提高算法搜索群体多样性;其次,采用认知心理学中的对比认知理论对学习算子选择策略进行自适应调整;最后,采用变邻域搜索操作提升算法局部搜索能力。采用小规模、中等规模、大规模、超大规模共76个多维背包问题的标准测试数据集进行数值实验,并将新算法和二进制粒子群算法、遗传算法、人类学习算法以及融合学习心理学的人类学习算法进行比较。结果表明新算法能够有效求解四种规模算例。与其他算法相比,新算法具有更高的寻优精度和更好的稳定性。此外,对提出的三种优化策略进行分析,测试其对提高算法搜索性能的有效性。 展开更多
关键词 人类学习优化算法 认知心理学 哈希函数 学习算子选择策略 多维背包问题
在线阅读 下载PDF
基于DCT与自适应人类学习优化算法的图像匹配算法 被引量:7
2
作者 张旭 郭东恩 《电子测量与仪器学报》 CSCD 北大核心 2018年第6期148-154,共7页
为提高图像匹配的精度和速度,利用离散余弦变换(DCT)和自适应人类学习优化算法(ASHLO),提出了一种快速并且抗噪性强的图像匹配算法。该方法利用当前搜索位置子图像和模板图像离散余弦变换后的参数构造适应度函数,经过迭代寻优寻找最优... 为提高图像匹配的精度和速度,利用离散余弦变换(DCT)和自适应人类学习优化算法(ASHLO),提出了一种快速并且抗噪性强的图像匹配算法。该方法利用当前搜索位置子图像和模板图像离散余弦变换后的参数构造适应度函数,经过迭代寻优寻找最优匹配位置。将该算法在正常情况下以及不同噪声情况下与穷举法、基于粒子群算法(PSO),基于人工蜂群算法(ABC)的图像匹配算法进比较。实验结果表明,该算法可以获得较高的准确率,成功匹配率约95%,且速度快,抗噪性强。 展开更多
关键词 图像匹配 离散余弦变换 自适应人类学习优化算法 粒子群 人工蜂群
在线阅读 下载PDF
融合学习心理学的人类学习优化算法 被引量:2
3
作者 孟晗 马良 刘勇 《计算机应用》 CSCD 北大核心 2022年第5期1367-1374,共8页
针对简单人类学习优化(SHLO)算法寻优精度低和收敛慢的问题,提出了一种融合学习心理学的人类学习优化算法(LPHLO)。首先,结合学习心理学中的小组学习(TBL)理论引入TBL算子,从而在个体经验、社会经验的基础上,增加了小组经验来对个体学... 针对简单人类学习优化(SHLO)算法寻优精度低和收敛慢的问题,提出了一种融合学习心理学的人类学习优化算法(LPHLO)。首先,结合学习心理学中的小组学习(TBL)理论引入TBL算子,从而在个体经验、社会经验的基础上,增加了小组经验来对个体学习状态进行控制,避免算法早熟收敛;然后,结合记忆编码理论提出了动态调参策略,从而实现个体信息、社会信息、团队信息的有效融合,更好地平衡了算法局部探索和全局开发的能力。选取典型的组合优化难题——背包问题中的两种算例,即单约束背包问题、多约束背包问题进行仿真实验,实验结果表明,所提LPHLO与基本的SHLO算法、遗传算法(GA)和二进制粒子群优化(BPSO)算法等算法相比,在寻优精度和收敛速度方面更具优势,具有更好的解决实际问题的能力。 展开更多
关键词 简单人类学习优化算法 学习心理学 学习策略 小组学习算子 动态调参策略
在线阅读 下载PDF
城市居民区回收箱布局和调度双层规划模型及优化算法
4
作者 郭谦 刘勇 马良 《计算机应用研究》 北大核心 2025年第1期177-184,共8页
针对城市居民区回收箱布局规划和路径优化问题,首先构建居民区回收箱数量与人口、回收频率、回收阈值的线性函数,并构建双层优化模型,回收总利润最大化作为上层目标,运输成本最小化作为下层目标。其次,为求解具有NP-hard特征的新模型,... 针对城市居民区回收箱布局规划和路径优化问题,首先构建居民区回收箱数量与人口、回收频率、回收阈值的线性函数,并构建双层优化模型,回收总利润最大化作为上层目标,运输成本最小化作为下层目标。其次,为求解具有NP-hard特征的新模型,设计加入团体学习算子和自适应选择策略的人类学习优化算法,并与禁忌搜索算法嵌套构建混合人类学习算法(hybrid human learning optimization algorithm,HHLO)。再次,采用不同规模算例,并将新算法与基本人类学习算法、遗传算法、自适应粒子群算法、红嘴蓝鹊算法进行对比分析,验证了模型的可行性和算法的有效性。最后,通过上海杨浦区某实例进行灵敏度分析,探讨回收箱容量、分时定价策略和分区定价策略对回收中心总利润与居民满意度的影响。 展开更多
关键词 回收箱布局 车辆调度 混合人类学习优化算法 双层规划
在线阅读 下载PDF
基于复合加权人类学习网络的超超临界机组建模与仿真 被引量:1
5
作者 程传良 彭晨 +1 位作者 曾德良 张腾飞 《系统仿真学报》 CAS CSCD 北大核心 2022年第7期1430-1438,共9页
中间点温度是超超临界(ultra supercritical,USC)机组的一个重要参数,其系统具有强非线性,常规方法很难对其进行建模。为了解决非线性问题,并获得良好的建模效果,提出了一种基于复合加权人类学习优化网络(composite weighted human lear... 中间点温度是超超临界(ultra supercritical,USC)机组的一个重要参数,其系统具有强非线性,常规方法很难对其进行建模。为了解决非线性问题,并获得良好的建模效果,提出了一种基于复合加权人类学习优化网络(composite weighted human learning optimization network,CWHLON)的建模方法,以动态线性模型的形式来模拟对象的非线性动态过程。在仿真实验部分,将CWHLON模型与传统的递推最小二乘法和其他三种元启发式方法得到的模型进行综合比较,数据显示本文提出的方法在模型精度方面平均提高了77.93%,最大提高了78.65%,实现了辨识精度的有效提升。 展开更多
关键词 中间点温度 强非线性 建模 复合加权人类学习优化网络 超超临界机组
在线阅读 下载PDF
基于改进HLO和动态窗口的AGV动态避障路径规划算法
6
作者 王勤 魏利胜 《电子测量与仪器学报》 北大核心 2025年第2期213-221,共9页
针对人类学习优化算法搜索效率低、易陷入局部最优、无法实现动态避障等问题,提出一种融合改进人类学习优化算法和动态窗口算法的路径规划算法。首先,利用非线性递增和递减改进概率参数提高人类学习优化算法的收敛速率,并引入粒子群算... 针对人类学习优化算法搜索效率低、易陷入局部最优、无法实现动态避障等问题,提出一种融合改进人类学习优化算法和动态窗口算法的路径规划算法。首先,利用非线性递增和递减改进概率参数提高人类学习优化算法的收敛速率,并引入粒子群算法更新个体知识数据库与社会知识数据库,并且自适应调整惯性权重系数,避免陷入局部最优;其次,在动态窗口算法的评价函数中加入角评价函数避免与障碍物的夹角过小、动态改变速度评价函数和角评价函数权重,以调节速度及角度;最后,将改进的算法应用于自动导引车的路径规划,仿真实验表明融合算法规划路径长度比蚁群算法路径减少4%,比混合人类学习优化与粒子群算法减少15%,其他两种算法与障碍物接触次数是改进算法的5倍,减少路径长度和转折次数,提升路径的平滑性。并且成功避免在T型以及复杂地图环境的障碍物,验证所提算法的可行性。 展开更多
关键词 路径规划 人类学习优化算法 局部避障 自动导引车 动态窗口
在线阅读 下载PDF
新能源汽车电池回收网点竞争选址模型及算法 被引量:3
7
作者 刘勇 杨锟 《计算机应用》 CSCD 北大核心 2024年第2期595-603,共9页
针对考虑排队论的新能源汽车电池回收网点竞争设施选址问题,提出一种改进的人类学习优化(IHLO)算法。首先,构建包含排队时间约束、容量约束和门槛约束等条件的新能源汽车电池回收网点竞争设施选址模型;然后,考虑到该问题属于NP-hard问题... 针对考虑排队论的新能源汽车电池回收网点竞争设施选址问题,提出一种改进的人类学习优化(IHLO)算法。首先,构建包含排队时间约束、容量约束和门槛约束等条件的新能源汽车电池回收网点竞争设施选址模型;然后,考虑到该问题属于NP-hard问题,针对人类学习优化(HLO)算法前期收敛速度较慢、寻优精度不够高、求解稳定性不够高的不足,通过引入精英种群反向学习策略、团队互助学习算子和调和参数自适应策略提出IHLO算法;最后,以上海市和长江三角洲为例进行数值实验,并将IHLO算法和改进二进制灰狼(IBGWO)算法、改进二进制粒子群(IBPSO)算法、HLO算法和融合学习心理学的人类学习优化(LPHLO)算法进行比较。大、中、小三种不同规模的实验结果表明,IHLO算法在15个指标中的14个指标上表现最优,IHLO算法比IBGWO算法求解精度至少提高了0.13%,求解稳定性至少提高了10.05%,求解速度至少提高了17.48%。所提算法具有较高的计算精度和优化速度,可有效解决竞争设施选址问题。 展开更多
关键词 竞争设施选址 人类学习优化算法 排队论 团队互助学习算子 调和参数自适应策略
在线阅读 下载PDF
城市物流无人机起降点布局规划研究 被引量:17
8
作者 张洪海 冯棣坤 +3 位作者 张晓玮 刘皞 钟罡 张连东 《交通运输系统工程与信息》 EI CSCD 北大核心 2022年第3期207-214,共8页
针对城市物流无人机起降点布局规划问题,考虑不同级别的物流无人机起降点,构建以总经济成本最小和客户满意度最高为目标,以禁飞区、无人机性能、容需匹配等为约束的整数规划模型。设计人类学习优化算法(HLO),引入随机学习算子、个体学... 针对城市物流无人机起降点布局规划问题,考虑不同级别的物流无人机起降点,构建以总经济成本最小和客户满意度最高为目标,以禁飞区、无人机性能、容需匹配等为约束的整数规划模型。设计人类学习优化算法(HLO),引入随机学习算子、个体学习算子和社会学习算子。在此基础上,基于真实地理信息数据和物流数据设计仿真实验,验证模型与算法有效性。实验结果表明,所建模型可以实现起降点的合理布局规划,适用于大规模资源配置,具备有效性;人类学习优化算法较遗传算法求解精度与收敛速度更优,表现出较佳性能。参数分析表明,基于该仿真环境的最优经济成本权重和客户满意度权重设置为0.4和0.6,最佳算法学习概率参数组合为5/n和(0.8+2/n)。据此可对城市物流无人机起降点布局规划提供决策依据。 展开更多
关键词 航空运输 起降点布局规划 人类学习优化算法 物流无人机 物流配送
在线阅读 下载PDF
基于AHLO与K均值聚类的图像分割算法 被引量:12
9
作者 王丰斌 《沈阳工业大学学报》 EI CAS 北大核心 2019年第4期427-432,共6页
针对图像分割中K均值算法全局搜索能力差、初始聚类中心选择敏感的问题,提出了一种将自适应人类优化算法与K均值算法相结合的聚类算法.该算法利用自适应人类学习优化算法初始化聚类中心,提高K均值算法的稳健性.结果表明,该算法聚类得到... 针对图像分割中K均值算法全局搜索能力差、初始聚类中心选择敏感的问题,提出了一种将自适应人类优化算法与K均值算法相结合的聚类算法.该算法利用自适应人类学习优化算法初始化聚类中心,提高K均值算法的稳健性.结果表明,该算法聚类得到的标准差相比传统K均值算法和基于粒子群K均值(PSO-Kmeans)算法分别小两个数量级和一个数量级,同时图像分割得到的PSNR值均较高,具有算法收敛速度更快,聚类质量更好,图像分割效果更好,适应性更强的优点. 展开更多
关键词 均值 图像分割 自适应人类学习优化算法 粒子群 聚类 迭代 全局搜索 智能算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部