期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
“知识传统的想象力”:社会学本土化的反思性建构空间 被引量:2
1
作者 姜利标 《人文杂志》 CSSCI 北大核心 2020年第6期120-128,共9页
如何生产具有解释效力的学科知识以及如何提升学科话语的世界地位,成为中国社会学本土化发展必然遭遇的行动议题。通过对社会学传统研究发现:知识在生产过程中会预设人性状态的假定;此外,知识生产也时刻关注日常生活的情境变迁过程。人... 如何生产具有解释效力的学科知识以及如何提升学科话语的世界地位,成为中国社会学本土化发展必然遭遇的行动议题。通过对社会学传统研究发现:知识在生产过程中会预设人性状态的假定;此外,知识生产也时刻关注日常生活的情境变迁过程。人性状态假定和社会情境变迁,将成为社会学本土化知识生产关注的核心要素。针对如何寻找知识生产的有效切点,时态序列立场的引入能为既有社会学传统提供认知性解析和参照性灵感。实际上,既有知识可以化约为社会情境现在时视角下的例行性事实和社会情境将来时视角下的未知性事实两种传统,不过这两种立场都没有留意到社会情境现在完成进行时视角下的模糊性事实。因此,具有联结社会情境例行性和未知性的模糊性事实,或许能给社会学本土化知识发展带来实践性突破。 展开更多
关键词 知识传统 人性状态 情境变迁 时序化约 模糊性事实
在线阅读 下载PDF
A novel robust approach for SLAM of mobile robot
2
作者 马家辰 张琦 马立勇 《Journal of Central South University》 SCIE EI CAS 2014年第6期2208-2215,共8页
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ... The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach. 展开更多
关键词 mobile robot simultaneous localization and mapping (SLAM) improved FastSLAM 2.0 H∞ filter particle swarmoptimization (PSO)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部