期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多种地震反演方法的哈拉哈塘地区火成岩识别及速度建模 被引量:11
1
作者 崔永福 许永忠 +5 位作者 彭更新 郭念民 王兴军 郑多明 马一名 张昆 《东北石油大学学报》 CAS 北大核心 2016年第4期54-62,共9页
塔里木盆地北部哈拉哈塘地区油气成藏条件良好,普遍发育二叠系火成岩储层,地震震资料显示二叠系岩性、速度变化剧烈,影响其下伏奥陶系油藏"串珠"的叠前深度偏移成像及低幅构造圈闭的变速成图。在分析哈拉哈塘南部工区地质资... 塔里木盆地北部哈拉哈塘地区油气成藏条件良好,普遍发育二叠系火成岩储层,地震震资料显示二叠系岩性、速度变化剧烈,影响其下伏奥陶系油藏"串珠"的叠前深度偏移成像及低幅构造圈闭的变速成图。在分析哈拉哈塘南部工区地质资料基础上,采用约束稀疏脉冲反演、人工神经网络反演、多参数反演方法对二叠系火成岩速度识别进行对比;采用db4小波对声波测井曲线进行基于小波变换的分频重构,将反演得到的速度模型应用在叠前深度偏移中。结果表明,约束稀疏脉冲反演方法更适用于工区巨厚的、岩相变化复杂的火成岩的快速建模;声波测井曲线重构后反演的数据体对岩性的识别能力明显提高,有助于火成岩速度建模。文中速度模型对"串珠"的刻画取得较好效果,表明该方法可为哈拉哈塘及类似地区火成岩研究提供初始速度模型。 展开更多
关键词 约束稀疏脉冲反演 人工神经网络反演 声波重构反演 速度建模 火成岩 哈拉哈塘地区
在线阅读 下载PDF
Adaptive Bayesian inversion of pore water pressures based on artificial neural network : An earth dam case study
2
作者 AN Lu CARVAJAL Claudio +4 位作者 DIAS Daniel PEYRAS Laurent JENCK Orianne BREUL Pierre ZHANG Ting-ting 《Journal of Central South University》 CSCD 2024年第11期3930-3947,共18页
Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,... Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion. 展开更多
关键词 earth dam permeability coefficient pore water pressure monitoring data bayesian inversion artificial neural network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部