期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
1
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
在线阅读 下载PDF
Adaptive Bayesian inversion of pore water pressures based on artificial neural network : An earth dam case study
2
作者 AN Lu CARVAJAL Claudio +4 位作者 DIAS Daniel PEYRAS Laurent JENCK Orianne BREUL Pierre ZHANG Ting-ting 《Journal of Central South University》 CSCD 2024年第11期3930-3947,共18页
Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,... Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion. 展开更多
关键词 earth dam permeability coefficient pore water pressure monitoring data bayesian inversion artificial neural network
在线阅读 下载PDF
多级涡轮多目标气动优化设计流程 被引量:2
3
作者 赵洪雷 颜培刚 韩万金 《推进技术》 EI CAS CSCD 北大核心 2007年第2期176-180,共5页
在准三维设计基础上,采用多目标优化设计方法,给出一个多级涡轮气动优化设计流程,优化联合采用人工神经网络和遗传算法,流场计算采用全三维粘性流N-S方程求解。此优化设计流程有三个特点:针对每列叶栅的气动特性进行局部优化;各列叶栅... 在准三维设计基础上,采用多目标优化设计方法,给出一个多级涡轮气动优化设计流程,优化联合采用人工神经网络和遗传算法,流场计算采用全三维粘性流N-S方程求解。此优化设计流程有三个特点:针对每列叶栅的气动特性进行局部优化;各列叶栅反复多次优化;粗细网格交替使用。并采用此设计流程对一三级涡轮进行优化设计,效率提高1%,说明此方法可以有效的用于多级涡轮气动优化设计。 展开更多
关键词 涡轮 设计流程 ^多目标优化^+ ^遗传算法^+ ^人工神经网络^+
在线阅读 下载PDF
Prediction of resilient modulus for subgrade soils based on ANN approach 被引量:12
4
作者 ZHANG Jun-hui HU Jian-kun +2 位作者 PENG Jun-hui FAN Hai-shan ZHOU Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期898-910,共13页
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil... The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation. 展开更多
关键词 resilient modulus subgrade soils artificial neural network multi-population genetic algorithm prediction method
在线阅读 下载PDF
Flame image recognition of alumina rotary kiln by artificial neural network and support vector machine methods 被引量:18
5
作者 张红亮 邹忠 +1 位作者 李劼 陈湘涛 《Journal of Central South University of Technology》 EI 2008年第1期39-43,共5页
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia... Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN. 展开更多
关键词 rotary kiln flame image image recognition shape descriptor artificial neural network support vector machine
在线阅读 下载PDF
Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network 被引量:9
6
作者 WU Jia-jun HUANG Zheng +4 位作者 QIAO Hong-chao WEI Bo-xin ZHAO Yong-jie LI Jing-feng ZHAO Ji-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3346-3360,共15页
In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on or... In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data. 展开更多
关键词 laser shock processing residual stress MICROHARDNESS artificial neural network
在线阅读 下载PDF
Establishment of constitutive relationship model for 2519 aluminum alloy based on BP artificial neural network 被引量:8
7
作者 林启权 彭大暑 朱远志 《Journal of Central South University of Technology》 EI 2005年第4期380-384,共5页
An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the err... An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed. 展开更多
关键词 2519 aluminum alloy BP algorithm neural network constitutive model
在线阅读 下载PDF
Application of BPANN in spinning deformation of thin-walled tubular parts with longitudinal inner ribs 被引量:7
8
作者 江树勇 李萍 薛克敏 《Journal of Central South University of Technology》 EI 2004年第1期27-30,共4页
Back-propagation artificial neural network (BPANN) is used in ball backward spinning in order to form thin-walled tubular parts with longitudinal inner ribs. By selecting the process parameters which have a great infl... Back-propagation artificial neural network (BPANN) is used in ball backward spinning in order to form thin-walled tubular parts with longitudinal inner ribs. By selecting the process parameters which have a great influence on the height of inner ribs as well as fish scale on the surface of the spun part, a BPANN of 3-8-1 structure is established for predicting the height of inner rib and recognizing the fish scale defect. Experiments data have proved that the average relative error between the measured value and the predicted value of the height of inner rib is not more than 5%. It is evident that BPANN can not only predict the height of inner ribs of the spun part accurately, but recognize and prevent the occurrence of the quality defect of fish scale successfully, and combining BPANN with the ball backward spinning is essential to obtain the desired spun part. 展开更多
关键词 artificial neural network BACK-PROPAGATION ball spinning power spinning
在线阅读 下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
9
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (ANNs) Levenberg-Marquardt algorithm imperialist competitive algorithm (ICA)
在线阅读 下载PDF
Application of fuzzy analytic hierarchy process and neural network in power transformer risk assessment 被引量:8
10
作者 李卫国 俞乾 罗日成 《Journal of Central South University》 SCIE EI CAS 2012年第4期982-987,共6页
In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(... In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions. 展开更多
关键词 fuzzy analytic hierarchy process risk assessment power transformer artificial neutral network
在线阅读 下载PDF
Nonlinear inversion for electrical resistivity tomography based on chaotic DE-BP algorithm 被引量:5
11
作者 戴前伟 江沸菠 董莉 《Journal of Central South University》 SCIE EI CAS 2014年第5期2018-2025,共8页
Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was pres... Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion. 展开更多
关键词 electrical resistivity tomography nonlinear inversion differential evolution back propagation network Tent map
在线阅读 下载PDF
Application of artificial neural network to predict Vickers microhardness of AA6061 friction stir welded sheets 被引量:5
12
作者 Vahid Moosabeiki Dehabadi Saeede Ghorbanpour Ghasem Azimi 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2146-2155,共10页
The application of friction stir welding(FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network(ANN) technique was employed to p... The application of friction stir welding(FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network(ANN) technique was employed to predict the microhardness of AA6061 friction stir welded plates. Specimens were welded employing triangular and tapered cylindrical pins. The effects of thread and conical shoulder of each pin profile on the microhardness of welded zone were studied using tow ANNs through the different distances from weld centerline. It is observed that using conical shoulder tools enhances the quality of welded area. Besides, in both pin profiles threaded pins and conical shoulders increase yield strength and ultimate tensile strength. Mean absolute percentage error(MAPE) for train and test data sets did not exceed 5.4% and 7.48%, respectively. Considering the accurate results and acceptable errors in the models' responses, the ANN method can be used to economize material and time. 展开更多
关键词 friction stir welding artificial neural network aluminum 6061 alloy Vickers microhardness
在线阅读 下载PDF
Experimental study of laser cladding process and prediction of process parameters by artificial neural network(ANN) 被引量:3
13
作者 Rashi TYAGI Shakti KUMAR +2 位作者 Mohammad Shahid RAZA Ashutosh TRIPATHI Alok Kumar DAS 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3489-3502,共14页
Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combin... Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combinations of controllable parameters(microhardness and clad thickness).The microhardness and clad thickness are recorded at all the experimental runs and studied using Taguchi S/N ratio and the optimum controllable parametric combination is obtained.However,an artificial neural network(ANN)identifies different sets of optimal combinations from Taguchi method but they both got almost the same clad thickness and hardness values.The micro-hardness of cladded layer is found to be6.22 times(HV_(0.5)752)the SS304 hardness(HV_(0.5)121).The presence of nitride ceramics results in a higher micro hardness.The cladded surface is free from cracks and pores.The average clad thickness is found to be around 0.6 mm. 展开更多
关键词 laser cladding Taguchi orthogonal array artificial neural network MICROHARDNESS MICROSTRUCTURE
在线阅读 下载PDF
Artificial neural network modeling of gold dissolution in cyanide media 被引量:3
14
作者 S.Khoshjavan M.Mazloumi B.Rezai 《Journal of Central South University》 SCIE EI CAS 2011年第6期1976-1984,共9页
The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid ... The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results. 展开更多
关键词 artificial neural network GOLD CYANIDATION modeling sensitivity analysis
在线阅读 下载PDF
Artificial neural network based inverse design method for circular sliding slopes 被引量:4
15
作者 丁德馨 张志军 《Journal of Central South University of Technology》 EI 2004年第1期89-92,共4页
Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inv... Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes. 展开更多
关键词 circular sliding slopes artificial neural network inverse design
在线阅读 下载PDF
Semi-autogenous mill power prediction by a hybrid neural genetic algorithm 被引量:2
16
作者 Hoseinian Fatemeh Sadat Abdollahzadeh Aliakbar Rezai Bahram 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期151-158,共8页
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l... There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters. 展开更多
关键词 semi-autogenous mill mill power prediction sensitivity analysis artificial neural network genetic algorithm
在线阅读 下载PDF
Dynamic rupture and crushing of an extruded tube using artificial neural network(ANN)approximation method 被引量:2
17
作者 Javad Marzbanrad Behrooz Mashadi +1 位作者 Amir Afkar Mostafa Pahlavani 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期869-879,共11页
A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobil... A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. Previous researches show that thin-walled circular tube has the highest energy absorption under axial impact amongst different structures. In this work, the crushing between two rigid flat plates and the tube rupture by 4 and 6 blades cutting tools is modeled with the help of ductile failure criterion using the numerical method. The tube material is aluminum EN AW-7108 T6 and its length and diameter are 300 mm and 50 ram, respectively. Using the artificial neural network (ANN), the most important surfaces of energy absorption parameters, including the maximum displacement of the striker, the maximum axial force, the specific energy absorption and the crushing force efficiency in terms of impact velocity and tube thickness are obtained and compared to each other. The analyses show that the tube rupture by the 6 blades cutting tool has more energy absorption in comparison with others. Furthermore, the results demonstrate that tube cutting with the help of multi-blades cutting tools is more stable, controllable and predictable than tube folding. 展开更多
关键词 thin-walled structure RUPTURE energy absorption ductile failure criterion neural network
在线阅读 下载PDF
Modeling approaches to pressure balance dynamic system in shield tunneling 被引量:2
18
作者 李守巨 于申 屈福政 《Journal of Central South University》 SCIE EI CAS 2014年第3期1206-1216,共11页
In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial n... In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests. 展开更多
关键词 intelligent modeling neural network pressure balance system excavation chamber analytically modeling approach
在线阅读 下载PDF
Ratio of Fe-Al compound at interface of steel-backed Al-graphite semi-solid bonding plate 被引量:2
19
作者 张鹏 杜云慧 +3 位作者 刘汉武 张君 曾大本 巴立民 《Journal of Central South University of Technology》 EI 2007年第1期7-12,共6页
The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The re... The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The relationship between the ratio of Fe-Al compound at interface and bonding parameters (such as preheat temperature of steel plate, solid fraction of Al-7graphite slurry and rolling speed) was established by artificial neural networks perfectly. The results show that when the bonding parameters are 516 ℃ for preheat temperature of steel plate, 32.5% for solid fraction of Al-7graphite slurry and 12 mm/s for rolling speed, the reasonable ratio of Fe-Al compound corresponding to the largest interfacial shear strength of bonding plate is obtained to be 70.1%. This reasonable ratio of Fe-Al compound is a quantitative criterion of interracial embrittlement, namely, when the ratio of Fe-Al compound at interface is larger than 70.1%, interfacial embrittlement will occur. 展开更多
关键词 bonding interface ratio of Fe-AI compound at interface artificial neural network
在线阅读 下载PDF
Analysis and optimization of variable depth increments in sheet metal incremental forming 被引量:1
20
作者 李军超 王宾 周同贵 《Journal of Central South University》 SCIE EI CAS 2014年第7期2553-2559,共7页
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a... A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment. 展开更多
关键词 incremental forming numerical simulation variable depth increment genetic algorithm OPTIMIZATION
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部