期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
人工神经元网学习的多模式现象 被引量:3
1
作者 田大钢 费奇 郭俐 《预测》 CSSCI 1997年第4期60-62,共3页
本文指出人工神经元网学习存在的多模式现象,说明根据人工神经元网学习权重的大小来判断因子重要性必须慎重。
关键词 人工神经元网 多模式现象 预测
在线阅读 下载PDF
基于神经网络的涡轮泵多故障诊断 被引量:11
2
作者 张炜 张玉祥 黄先祥 《推进技术》 EI CAS CSCD 北大核心 2003年第1期17-20,39,共5页
针对液体火箭发动机的涡轮泵系统中 ,常出现多故障同时发生的现象 ,分析了涡轮泵常见故障的特征表现 ,建立了涡轮泵系统的标准故障模式。在此基础上 ,提出了采用建立并行BP神经网络进行多故障诊断分类的方法。结果表明 ,并行BP神经网络... 针对液体火箭发动机的涡轮泵系统中 ,常出现多故障同时发生的现象 ,分析了涡轮泵常见故障的特征表现 ,建立了涡轮泵系统的标准故障模式。在此基础上 ,提出了采用建立并行BP神经网络进行多故障诊断分类的方法。结果表明 ,并行BP神经网络结构简单 ,学习诊断速度快 ,对单一故障的诊断分类优于基本BP网络 。 展开更多
关键词 液体推进剂火箭发动机 涡轮泵 人工神经元网 故障诊断
在线阅读 下载PDF
Analysis and optimization of variable depth increments in sheet metal incremental forming 被引量:1
3
作者 李军超 王宾 周同贵 《Journal of Central South University》 SCIE EI CAS 2014年第7期2553-2559,共7页
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a... A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment. 展开更多
关键词 incremental forming numerical simulation variable depth increment genetic algorithm OPTIMIZATION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部